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ABSTRACT

This thesis proposes a statistical project control approach to monitor the cost and duration
performance of projects. The literature review on the application of statistical process control
for project monitoring pointed towards the use of control charts with control limits based on
simulated samples as a powerful method to set thresholds to distinguish between acceptable
and not acceptable variation on the project performance. However, the existing literature on the
use of such charts is still very incipient and was limited to the use of cost-based data to monitor

exclusively the duration dimension of project performance.

Therefore, addressing the key theoretical gaps, the statistical project control approach proposed
in this thesis brings four major contributions to the project management body of knowledge and
to the statistical process control literature. First, the exclusive use of time-based data, from the
recently proposed Earned Duration Management (EDM), to monitor the project duration
performance using control charts with probability control limits. Second, the use of such control
charts to monitor the cost performance of projects using Earned Value Management (EVM)
observations. Third, the use of multivariate control charts to simultaneously monitor the
duration and cost performance of projects. Finally, a decision-making process to set the control
limits such that they enable the project team drilling down to lower project levels only when it

is really necessary, avoiding investing time and effort to investigate false alarms.

This is a paper-based thesis and its outcomes are five papers. In this sense, this document brings
the findings and methodological aspects of each publication as well as the integration among

them to establish a holistic view on the proposed statistical project control approach.

The output of the research is a framework to build univariate and multivariate control charts to
monitor the cost and duration performance of projects and a process to set the most appropriate
probability control limits. Numerical examples were used to illustrate the use of the method on
real-life construction projects and simulation experiments were performed to assess the
performance of the proposed charts. The experiment results demonstrated that the proposed
methods exhibit a good performance facilitating the interpretation of the actual deviations
during the project execution, distinguishing between the common and special sources of

variation.

KEYWORDS. Project Management; Statistical Process Control; Risk Analysis; Earned

Value Management; Earned Duration Management; Simulation



RESUMO

Esta tese propde uma abordagem de controle estatistico de projetos para monitorar o
desempenho de custo e duragdo de projetos. A revisdo da literatura sobre a aplicagdo de controle
estatistico de processo para monitoramento de projetos indicou que a utilizagdo de graficos de
controle com limites de controle baseados em amostras simuladas pode ser um método
poderoso para distinguir variagdes aceitaveis e ndo aceitaveis de desempenho na execugdo de
projetos. No entanto, a literatura existente sobre o uso de tais graficos no gerenciamento de
projetos ainda ¢ muito incipiente ¢ se limitava ao uso de indicadores baseados em custos para
monitorar exclusivamente a dimensdo da duracdo do desempenho dos projetos.

Portanto, identificadas as principais lacunas teoricas, a abordagem de controle estatistico de
projetos proposta nesta tese traz quatro contribui¢des principais para o corpo de conhecimento
de gerenciamento de projetos e para a literatura de controle estatistico de processos. Em
primeiro lugar, o uso exclusivo de indicadores baseados no tempo, da metodologia proposta
mais recentemente Earned Duration Management (EDM), para monitorar o desempenho da
duragdo de projetos usando graficos de controle com limites probabilisticos de controle. Em
segundo lugar, o uso de tais graficos de controle para monitorar o desempenho dos custos dos
projetos, usando observacdes da metodologia Earned Value Management (EVM). Terceiro, o
uso de graficos de controle multivariados para monitorar simultaneamente o desempenho de
duracdo e de custos de projetos. Finalmente, um processo de tomada de decisdo para definir
mais apropriadamente os limites de controle de forma que possibilitem a equipe do projeto
investigar os detalhes de cada atividade do projeto apenas quando for realmente necessario,
evitando investir tempo e esfor¢o para investigar alarmes falsos.

Esta ¢ uma tese em formato de coletanea de artigos e seu resultado esta baseado em cinco
artigos. Nesse sentido, este documento traz os achados e aspectos metodologicos de cada
publicagdo, bem como a integracdo entre eles, para estabelecer uma vis@o holistica sobre a
abordagem de controle estatistico de projetos proposta.

O resultado da pesquisa ¢ um modelo para construir graficos de controle univariados e
multivariados para monitorar o desempenho de custo e duragdo dos projetos ¢ um processo de
tomada de decisdo para definir os limites probabilisticos de controle. Exemplos numéricos
foram utilizados para ilustrar o uso do método em projetos de construcdo e de bens de capital e
experimentos de simulagdo foram realizados para avaliar o desempenho dos graficos propostos.
Os resultados dos experimentos demonstraram que os métodos propostos apresentam um bom
desempenho o que facilita a interpretagdo dos desvios reais durante a execugdo do projeto,
distingue entre causas comuns de variagdo, que ocorrem quando o projeto estd em controle
estatistico, e causas especiais (assinalaveis) de variacdo, que devem ser interpretadas como
evidéncias de um risco real de atraso ou desvio de custos do projeto.

Palavras-chave. Gerenciamento de projetos; Controle estatistico de processo; Analise de
risco; Earned Value Management; Earned Duration Management; Simulaciao
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PART I - INTEGRATIVE THESIS OVERVIEW

1 INTRODUCTION

This thesis proposes a statistical project control approach to monitor the cost and duration
performance of projects. In order to accomplish this objective, the research has followed a
progressive approach, starting with the literature review on the evolution and trends on the
application of statistical process control (SPC) for project monitoring and on the earned value

methodologies used for project control.

The outcomes of this initial stage have pointed towards the key theoretical gaps in the
literature and have driven the following steps of the research. The use of control charts with
probability control limits based on simulated samples was identified as a powerful method to
set thresholds to distinguish between acceptable and not acceptable variation on the project
performance. However, the existing literature on the use of such control charts for project
monitoring is still very incipient and it was limited to the use of cost-based data to exclusively

monitor the duration dimension of project performance.

Therefore, addressing the main gaps, the statistical project control approach proposed in
this thesis brings four major contributions to the SPC literature and to the project management
(PM) body of knowledge. First, the exclusive use of time-based data, from the recently
proposed Earned Duration Management (EDM), to monitor the project duration performance
using control charts with probability control limits. Second, the use of such control charts to
monitor the cost performance of projects using Earned Value Management (EVM)
observations. Third, the use of multivariate control charts to simultaneously monitor the
duration and cost performance of projects. Finally, the proposal of a decision-making process
to set the most appropriate control limit width such that it enables the project team drilling down
to lower project levels only when it is really necessary, avoiding investing time and effort to

investigate false alarms.

This is a paper-based thesis and its outcomes are five papers. The three journal papers,
that are the core of this study, cover each of the research specific objective in a comprehensive
manner. Complementarily, two conference papers provided the bases of the literature review
and supported the first research steps and objective. In this sense, this document brings the
findings and methodological aspects of each publication as well as the integration among them

to establish a holistic view on the proposed statistical project control approach.
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The research proposed different solutions, univariate or multivariate approaches, to
monitor the cost and duration performance of projects and a framework to set the most
appropriated control limit width. Numerical examples were used to illustrate the use of the
method on real-life construction projects, and simulation experiments were performed to assess
the performance of the proposed charts. The experiment results demonstrated that the proposed
methods exhibit a good performance facilitating the interpretation of the actual deviations
during the project execution, distinguishing between the common and special sources of

variation.

1.1 Research Problem and Justification

Project control aims to measure and evaluate the actual progress and the performance of
a project by comparing it with a baseline scheduling, analyzing the eventual deviations, and
taking necessary early actions to correct these deviations to ensure that the project is completed
on time and within budget (Acebes et al., 2014; 2015; Hazir, 2015; Willems & Vanhoucke,
2015).

A widely used managerial methodology for project performance monitoring is the Earned
Value Management (EVM), which integrates the cost and the schedule control in the same
framework and provides performance indexes that enable the project teams to anticipate the
cost overruns and the project delays (Pajares & Lopez-Paredes, 2011; Colin & Vanhoucke,
2014; Khamooshi & Golafshani, 2014; Acebes et al., 2014; 2015). Initially, EVM focused
mainly on costs. Afterwards, the attention has gradually shifted to the duration control partially
due to the study of Lipke (2003), which introduced the concept of Earned Schedule
Management (ESM), as an extension of EVM, to improve the monitoring of the actual project

progress.

More recently, Khamooshi and Golafshani (2014) introduced the Earned Duration
Management (EDM) to emphasize the duration dimension of projects and address some
shortcomings of EVM and ESM caused by the use of cost-based metrics as proxies to assess
the project duration performance (Vanhoucke et al., 2015; Votto et al., 2020a). Its foundation
lies in the exclusive use of time-based data to generate the duration indicators (Vanhoucke et

al., 2015; Ghanbari et al., 2017a).
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Despite the great success of these methodologies, they often utilize intuitive thresholds
based on the practical experience to distinguish between the acceptable and the not acceptable
variations from the project baseline schedule, which was highlighted as one of the main
shortcomings of EVM and its extensions (Colin & Vanhoucke, 2014; Colin & Vanhoucke,
2015a; Salehipour et al., 2016; Wauters & Vanhoucke, 2017). To overcome these problems, an
active area of development in academic literature focused on the application of control charts
to monitor project performance. These charts differentiate abnormal signals that indicate actual
problems from normal signals that do not affect the project success (Bauch & Chung, 2001;
Wang et al., 2006; Leu & Lin, 2008; Aliverdi et al., 2013; Colin & Vanhoucke, 2014, Colin et
al., 2015; Bancescu, 2016; Salehipour et al., 2015; Hadian & Rahimifard, 2019; Votto et al.,
2020a; 2020b).

Introduced by Shewhart in 1924, control charts have been widely applied to a variety of
industries and processes (Montgomery, 2009). Traditionally, control charts have been used to
monitor the stabilities of various parameters (such as the mean, the standard deviation, and the
non-conforming fraction) of production processes over time. Recently, these charts were
adopted to monitor the quality of services and determine if the spread of a particular disease
reached an epidemic level; they were also utilized in public health surveillance and social

networks (Votto et al. 2020a).

The primary problem for using the control charts for a project monitoring relates to the
fact that it is associated with a repeatable and long term process to monitor the deviations from
the normal progress as defined by the observed data. However, rather than an on-going process,
the projects are defined as finite and unique endeavors that do not completely follow any
repeatable process (Wang et al., 2006; Lipke et al., 2009; Colin & Vanhoucke, 2014;
Vanhoucke, 2017).

Therefore, the appropriate setting of the thresholds for project control based on how the
state of control is defined has been a target of fruitful discussions in the literature. Vanhoucke
(2019) classified the thresholds for the project monitoring into three categories, the static, the
analytical and the statistical control limits. Additionally, the control charts can be built in
different ways depending on the samples of the progress data (Martens & Vanhoucke, 2017).
First, the control limits can be calculated based on historical data either from the initial project
phases or from similar projects (Bauch & Chung, 2001; Wang et al., 2006; Leu & Lin, 2008;
Aliverdi et al., 2013; Bancescu, 2016; Salehipour et al., 2016). However, the concept of

similarity among projects is often vague and questionable and has been target of several critics
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(Colin & Vanhoucke, 2014; Vanhoucke, 2019; Votto et al, 2020a; 2020b). Alternatively, the
probability control limits can be determined by simulated samples, based on the acceptable

variation of each activity duration and cost (Colin & Vanhoucke, 2014; Votto et al., 2020a).

These probability control limits based on the simulated samples are argued to be the most
powerful method, although the most complexity as well. To overcome the shortcoming of
depending of historical data, it relies on more advanced statistical analysis and requires
computerized methods to generate and analyze the simulated data and assume a shift from the
project management by experience to a data driven management approach (Vanhoucke, 2019).
Introduced by Colin and Vanhoucke (2014) these control charts with statistical thresholds based
on a simulated sample were restricted to the project schedule monitoring using the cost based
EVM and ESM performance indicators. To the best of the author’s knowledge, the control
charts with statistical thresholds based on simulated samples had never been used with the

following objectives:

a) To monitor the duration performance of projects using a time based duration
performance index (DPI), from EDM;

b) To monitor the cost performance of projects using the cost performance indicator
(CPI), from EVM;

c¢) To simultaneously monitor the duration and the cost performance of projects;

d) Furthermore, there is no method in the literature to support the choice of the most
appropriate control limit width for each project, depending on its targets and risk
management decisions.

In this context, the need for having a more comprehensive statistical project control
approach with control limits determined by simulated samples provides a rationale for this
research. Its aims to answer the following question: Can the use of control charts with
probability control limits to monitor the duration and cost of projects improve the ability to
distinguish between acceptable and not acceptable variations, and trigger appropriate actions

when the observed variation in project’s progress exceeds a certain predefined threshold?

1.2 Research Objectives

Previous section highlighted the major gaps in the literature of the control chart for project
monitoring and the research problem. In order to address such gaps and to answer the research

question, the general objective of this thesis is: A statistical project control approach with
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probability control limits to monitor the project performance using EVM and EDM

indicators. This general objective is deployed into three specific objectives, depicted in Fig. 1.

1. Propose and asses the use of EDM’s time-based index to improve the performance of
control charts for the project duration monitoring.

2. Propose and asses the use of multivariate control charts to simultaneously monitor the
duration and the cost performance of projects with control limits based on simulated
samples.

3. Define a decision-making process to set the most appropriate control limit width for
the project monitoring, such that it timely triggers corrective actions only when real
deviations are identified and, simultaneously, reduces the effort in further

investigations of false alarms.

Fig. 1: Research Objectives

Research Objectives

General Objective
A statistical project control approach with probability control limits to monitor project

performance using EVM and EDM indicators.

Specific Objective 1 Specific Objective 2 Specific Objective 3
Propose and Asses the use of Propose and asses the use of Define a decision-making
EDM's time-based index to multivariate T2 control charts process to set the most
improve the performance of | to monitor the duration and cost| | appropriate control limit width
control charts to monitor performance of projects for project monitoring
project duration performance. simultaneously.

Source: Figure developed by the author for this thesis

1.3 Thesis Structure

This is a paper-based thesis and it is organized into two parts. Part I of this work follows
a traditional structure and focuses in the overall research objectives, contributions and how each
paper supports them. This Chapter 1 contextualizes the research problem, its objectives and the
thesis structure. Chapter 2 presents the notations used in this work and a brief introduction to
the EVM, ESM, and EDM indexes, as well as to the control charts performance metrics.
Chapter 3 presents the progressive process of the research and its phases. It also depicts each
publication objectives and their main contributions. Chapter 4 summarizes the main findings of
each paper and the manner how they integrate to each other towards accomplishing the overall
thesis’ objectives. Finally, Chapter 5 provides the research conclusions, limitations, and

recommendations for future studies.
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It is important to note that, in order to develop a comprehensive discussion about each
publication and the integration among them, this first part presents several elements of the
original papers, such as tables, figures, arguments, and paragraphs. However, for an extended
overview of each publication the reader is referred to Part II of this document that presents the

thesis’ papers themselves, which are the central part of the research.

This paper-based thesis is based on five publications (presented in Part IT). Paper #1 was
presented in 2017 at the XLIX “Simpdsio Brasileiro de Pesquisa Operacional” (SBPO) and is
entitled “Statistical Project Control: Control Charts for Project Duration Monitoring” (Votto et
al., 2017). Paper #2, Statistical Project Control with Earned Duration Management: Control
Charts for Project Duration Monitoring (Votto et al., 2018) was presented in 2018 at the
“XXXVIHIL Encontro Nacional de Engenharia de Produgdo” (ENEGEP). Paper #3 was
published in 2020 at “Journal of Construction Engineering and Management” (JCEM) of the
American Society of Civil Engineers (ASCE). It is entitled “Applying and Assessing
Performance of Earned Duration Management Control Charts for EPC Project Duration
Monitoring” (Votto et al., 2020a). Paper #4 was published in 2020 at “Computers & Industrial
Engineering” (CAIE) with the title “Multivariate Control Charts Using Earned Value and
Earned Duration Management Observations to Monitor Project Performance” (Votto et al.,
2020b). Paper #5, “Earned Duration Management Control Charts: The Relevant Role of the
Control Limit Width Definition for Construction Projects Duration Monitoring” is in the review

process.

The details of each paper are appended at the end of this document. They can be access
in the original Journal or Congress pages (the links are highlighted in the respective Appendix).

Fig. 2 depicts the thesis structure and the overall relation among the publications.
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Fig. 2: Paper-Based Thesis Structure
Thesis: Statistical Project Control to Monitor Project Progress Performance

Paper #4 (Published - CAIE)

Paper #3 (Published — Journal ASCE-JCEM)
Control Charts for Duration Performance Monitoring

Paper #1 (published — Congress) Paper #2 (published — Congress)
EVM and ESM Control Charts for || EDM Control Charts for Duration || (@&l (8 ki

Duration performance monitoring performance monitoring for Cost
E = = = = = = = B performance

monitoring

Assessing the performance of EDM Control Charts in comparison with the
traditional EVM and ESM indexes

Multivariate Control Charts using EDM and EVM observations to simultaneously
monitor duration and cost performance of projects

Paper #5 (Submitted — Journal ASCE-JCEM)

The Relevant Role of the Control Limit Width Definition for Construction Projects Duration
Monitoring

Source: Figure developed by the author for this thesis
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2 NOTATIONS AND MONITORED VARIABLES

This chapter presents the notations and a brief introduction to the project control

methodologies and to the metrics used to assess the control chart performance used in this work.

2.1 Project Control Notation and definitions

This section presents a brief introduction to the EVM, ESM, and EDM indexes, which
are the monitored variables of this study. For extended overviews of the EVM, ESM, and EDM
methodologies, the reader is referred to Anbari (2003), Lipke (2003), and Khamooshi and
Golafshani (2014), respectively.

The aim of a project control and monitoring system is to detect the deviations from the
project plan. It identifies and reports the project status, compares it with the plan, analyzes
deviations, and implements appropriate corrective actions (Hazir, 2015). EVM is a well-known
project control methodology that has attracted significant attention in the academic literature
(Anbari, 2003; Fleming & Koppelman, 2005; Vandevoorde & Vanhoucke, 2006; PMI, 2013).
It integrates the scope, the cost, and the schedule control into the same framework and provides
performance indexes that allow managers to detect the cost overruns and the delays (Pajares &

Lopez-Paredes, 2011; Acebes et al., 2014; 2015).

Briefly, EVM is based on the parameters and variables measured at the project level (Fig.
3 shows a graphical representation of the EVM methodology). Let uPV;;, EV;;, and AC;; be the
planned value, the earned value, and the actual cost of activity i at ¢, respectively. Once tracking
each activity’s progress along the project execution is not practical, EVM and its extensions
aggregate the performance of individual activities and track them at the project level to provide
the project team with an indication of the project progress status (Colin et al., 2015). Their sums
related to all n activities are respectively denoted as the project’s total planned value (uPV, =
Y, UPV;,), the total earned value (EV, = }i*; EV;;), and total actual cost (AC; = X7 AC;;).
Therefore, the parameter pPV; is the cumulative planned cost for the planned work from the
beginning of the project up to the review period ¢ according to the baseline schedule. During
the project execution, the variables AC; and EV; are periodically measured. They represent the
actual cost incurred to accomplish the work performed and the cumulated planned cost to

accomplish the total work performed from the beginning of the project up to the review period
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t, respectively. These metrics are used to define the cost performance index (CPI;) and the

schedule performance index (SPI;) at every period, as follow in the expressions (1) and (2)

Yi-1EViy  EV
CPI, = =— 1
t nAC,  AC, M

n RV, EV,
Splt — 21—1 it _ t (2)

These performance indexes can be thought of as efficiency ratios, in which the value one
indicates that the performance is efficient and on target. More than one indicates an excellent
performance and less than one indicates a poor project performance with cost or duration
overrun, respectively (Anbari, 2003). For instance, SPI; measures the overall work performed
in terms of the earned value, in comparison with the work planned up to that point in time. At
any time increment ¢, the project might have achieved more, less, or the same amount of work
in comparison with the work planned to be achieved until that moment. Thus, this measure can

have values greater, lower, or equal to one, respectively (Khamooshi & Golafshani, 2014).

Although the cost dimension of EVM is considered to be very effective, its schedule
aspect has been questioned conceptually in the last few years. Many researchers have argued
that SPI; is not an accurate or reliable measure of the schedule performance because the
monetary value of EV, equals pPV; in the end of the project and, therefore, SPI; converges to
one regardless of the actual duration (Lipke, 2003; Vandevoorde & Vanhoucke, 2006; Lipke et
al., 2009; Khamooshi & Golafshani, 2014; Vanhoucke et al., 2015). To overcome this
limitation, Lipke (2003) proposed ESM concept, in which the new earned schedule variable
(ES;) was introduced. It provides the actual schedule status of a project by estimating the
duration at which the current EV was supposed to be earned (Lipke, 2003; Lipke et al., 2009;
Hammad et al., 2018; Khamooshi & Abdi, 2016). This variable can be expressed in (3) as

(EV¢—UPVy,)

ES; =t, + (—
‘ 0 (HPVeg,y ~HPViy)

); WPV, < EV, < WPV, 3)

The magnitude of ES; is determined by projecting the cumulative EV; curve onto the pPV;
curve (Fig. 3). Afterwards, it is divided by the actual date ¢ to calculate the schedule performance
index based on Earned Schedule. In this study, it is called Time Performance Index (TPI,),
(instead of the original notation SPI(t);, to avoid confusion with SPI; from EVM). It is

expressed in (4) as follows:

ES
TPI, = Tt “)

By using ESM, some deficiencies of EVM can be overcome by monitoring the schedule

indicator TPI; throughout the entire project (Lipke, 2003; Hammad et al., 2018). Whereas many
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researchers agreed that the ESM method led to some improvements, recent studies argued that
it also has conceptual shortcomings (Ghanbari et al., 2017a; Khamooshi & Abdi, 2016;
Khamooshi & Golafshani, 2014; Votto et al., 2020). Although ES, is measured in time units, it
is based on the monetary values of EV; and pPV, (Eq. 3). Therefore, TPI, still uses monetary
terms to evaluate the schedule performance of a project (Khamooshi & Abdi, 2016).
Furthermore, despite the possible correlations between the durations of activities and the cost
items, the resulting duration and the cost profiles are not generally the same. The greater is their
disparity, the poorer is the project duration performance. In such cases, both SPI, and TPI,
produce inaccurate results, and sometimes, TPI; can even perform worse than SPI,, especially

in the case of large long-term projects (Lipke et al., 2009; Khamooshi & Golafshani, 2014).

Fig. 3: Earned value management and earned schedule management
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Source: Votto et al. (2020a)

To overcome those drawbacks, Khamooshi and Golafshani (2014) have recently
developed the EDM concept that emphasizes the project duration control. In this method, the
duration and the cost performance measures are completely decoupled, and the earned duration
ED, variable is introduced to measure the actual project duration (Khamooshi & Golafshani,

2014; Vanhoucke et al., 2015; Khamooshi & Abdi, 2016; Ghanbari et al., 2017a).

Therefore, let uPD;;, AD;;, and ED;; be the planned, actual, and earned durations of
activity i at time 7, respectively. Their sums related to all activities are respectively denoted as
the total planned duration (WTPD, = ), uPD;;), total actual duration (TAD, = }.i*; AD;;),
and total earned duration (TED; = Y., ED;;). Note that uyTPD;, TAD,, and TED, for EDM are
the counterparts or equivalent twins of uPV;, AC;, and EV, for EVM (Khamooshi & Golafshani,
2014). Its graphical representation is shown in Fig. 4, where the cost is replaced by the duration
(expressed in the units of time) on the vertical axis. Thus, these metrics are used to define the

earned duration index (EDI;) as follows:
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EDL = Y- EDy; _ TED, 5)
* " XL, uPD;  WTPD,

Similar to SPI;, this indicator measures the overall work performed in terms of Total
Earned Duration (TED;) in comparison with the work planned (W TPD;) up to that point in time
and can be greater, lower, or equal to one (Khamooshi & Golafshani, 2014). Furthermore, the
earned duration (ED,) variable measures the actual project progress in EDM (Khamooshi &
Golafshani, 2014; Vanhoucke et al., 2015; Khamooshi & Abdi, 2016; Ghanbari et al., 2017a;
2017b). Its graphical representation is also depicted in Fig. 4. The earned duration on the actual

date ¢ is the date when the current TED; should be achieved. ED; can be expressed as

(TED;~UTPDy,)

ED, = t, + (—
¢ 0 (HTPDgg , y ~HTPDy,)

),- WTPD,, < TED, < UTPD,,, (6)

Thus, ED; is divided by the actual date 7 to obtain the duration performance index (DPI,),

as follows:

ED
DPI, = Tt (7

Fig. 4: Earned duration management
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Source: Adapted from Khamooshi and Golafshani (2014) and Votto et al. (2020a)

Similar to TPI;, DPI; provides the measure of the progress performance on the critical
path and toward completion of the project. Therefore, the value of DPI, will be less than one,
if the project is being behind the schedule. It will be equal to one, when the project is overall
performing on schedule. Finally, it will be greater than one when the project is performing
ahead of schedule. Thus, these EDM performance indicators can be monitored during the

project execution to detect deviations from the baseline schedule.

Additionally, three additional notations are used. Let the uBPD; and uBPV; be the planned
baseline duration and the planned baseline value of activity i. Their sums related to all activities
at the end of the project are respectively denoted as the project’s final total planned duration
(uTPD = Y, uBPD;) and the budget at completion (UBAC = )i, uBPV;). Finally, the
baseline planned duration (uBPD) is the planned end date of the project considering the
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activities interdependences and relations described in the baseline schedule and by the project

network.

2.2 Control Chart Performance Metrics

This section briefly presents the metrics used in this study to evaluate the performance of
the proposed control charts. These metrics have been used in previous simulation project-
control studies. For an extended overview, the reader is referred to Colin and Vanhoucke

(2015b), Martens and Vanhoucke (2017), and Votto et al. (2020a).

The performance of a control chart is evaluated by the warning signals for each project
execution and identifying whether the project is going to be completed on time or delayed. A
warning signal is generated if the project performance index of a sample is not within the control
limits of the respective control chart during any review period ¢. Such signals can be classified
into two categories. A true positive is a correct warning signal that is generated when the project
is past the deadline. In contrast, a false positive, which represents a type I error probability, is
an incorrect warning signal made for the projects completed on time. In the same way, the lack
of warning signals can be classified into two categories. True negatives are produced when no
warning signals are created for a project that is completed on time. False negatives, also called
type II error probabilities, correspond to a situation when no warning signals are generated for
the late project executions (Martens & Vanhoucke, 2017). The first two performance measures
of project control have been presented by Colin and Vanhoucke (2014) and were used in several
studies (Colin & Vanhoucke, 2015a; 2015b; Martens & Vanhoucke, 2017; Votto et al., 2020a;
2020b).

The detection performance (DP) is defined as the probability that a warning signal is
generated for late projects. It is also called the true positive rate because it measures the
proportion of positives (i.e. late projects) that are identified as positives (i.e. generated warning
signals) and represents the conditional probability of receiving a warning signal when the
project is past the deadline (P [Signal | Overrun Projects]). The detection performance
should be as high as possible and it is the ratio of the sum of the late fictitious project executions
that produced a warning signal during the review period ¢ to the number of late executions

(Colin & Vanhoucke, 2014; Martens & Vanhoucke, 2017) expressed in (8):

# True Positives

Detection Performance = P [Signal | Overrun Projects] = ¥ Overrun Projects ®)
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The probability of overreaction (PO) is defined as the probability of receiving a warning
signal for projects that do not exceed the expected budget and deadline. It is also called the false
positive rate because it measures the proportion of negatives (i.e. projects within the expected
budget and duration) that are identified as positives (i.e. generated warning signals). It
represents the conditional probability of receiving a warning signal when the project is on
schedule and budget (P [Signal | as Planned Projects]). The probability of overreaction
should be as low as possible (Colin & Vanhoucke, 2014; Martens & Vanhoucke, 2017). It is
the ratio between the sum of the as planned fictitious project executions that generated a
warning signal during the review period ¢ (false positives) and the number of as planned

executions in the set of simulation runs expressed in (9):

. . . . # False Positives
Probability of overreaction = P [Signal | as Planned Projects] = ¥ as Planned Projects ©)

The detection performance and the probability of overreaction assess the control limits
and identify whether warning signals are generated for different project outcomes.
Nevertheless, in the real life, the outcome of a project is not known during its execution.
Therefore, two other performance measures are used to accurately assess the performance of
control charts: one defined by Colin and Vanhoucke (2015b) and a recent measure proposed by
Martens and Vanhoucke (2017).

Efficiency is the probability that the project deadline or budget is exceeded when a
warning signal is generated. Originally defined by Colin and Vanhoucke (2015b), this metric
is also called as positive predictive value and represents the conditional probability of overrun
in the presence of a warning signal during the review period ¢ (P [ Overrun Project | Signal]).

Efficiency can be expressed in (10) as

. . . . DP, X P[Overrun Projects]
Efficiency = P [Overrun Project | Signal] = P[Signal] (10)
t

and its value should be as high as possible. Finally, reliability is the probability that the project
deadline or budget is exceeded when a warning signal is not generated. It is also called as
negative predictive value and has been recently proposed by Martens and Vanhoucke (2017).
Reliability should be as high as possible and represents the conditional probability that the
project is going to be completed on time in the absence of a warning signal during the review

period ¢ (P [As planned project |no Signal]). It can be expressed in (11) as

Reliability = P[As pl d Project | no Signal] = (1 - PO,) X P[On time Projects] "
eliability = s planned Project | no Signal] = Plno Signall, (11)
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3 RESEARCH APPROACH

In order to achieve its objectives, this research has followed a progressive process to build
the statistical project control approach to monitor the project progress. In this context, the three
journal papers, that are the core of this study, cover each of the research specific objective in a
comprehensive manner. Meanwhile, the two congress papers provide the bases of the literature
review and support the first objective. It is worth noting that the output of some papers already
indicated the rationale of a future research phase. Fig. 5 summarizes the research phases and

how each paper is related to such phases and the research objectives.

The research approach adopted by this work, as well as by its papers, starts with a
literature review to investigate the evolution and trends on the application of statistical process
control for a project monitoring. Thus, the statistical project control methods were proposed in
each research phase to address the identified literature gaps and single or multi-case studies are
used to illustrate the application of the proposed methods on real-life projects. Later, especially
in papers #3, #4, and #5, a quantitative research approach using simulation experiments is used

to assess the performance of the proposed approach.

Fig. 5: Research Phases and Objectives

Research Question

General Objective

Specific Specific Specific
Objective 1 Objective 2 Objective 3

Phase 1: Control Charts to Monitor
EVM and ESM observations for Paper #1
Project Duration Monitoring

Phase 2: Control Charts to Monitor
EDM observations for Project Duration Paper #2
Monitoring

Phase 3 Assessing the Performance
of Control Charts to Monitor Project Paper #3
Duration Performance

Phase 4: Control Charts to Monitor
EVM observations for Project Cost
Monitoring

Paper #4

Phase 5: Multivariate control charts to
simultaneously monitor the duration
and cost performance of projects

Phase 6: Process to define the most
appropriate control limits

m
RESULTS

STATISTICAL PROJECT CONTROL APPROACH

Paper #5

Source: Figure developed by the author for this thesis
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3.1 Phase One: Literature Review and Control Charts to Monitor EVM and ESM

Observations for Project Duration Monitoring

The starting point of the research was the investigation of the existing literature and the
gaps on the use of statistical process control (SPC) charts to monitor the project performance
on the earned value management (EVM) and earned schedule management (ESM)

methodologies.

The implementation of SPC for project control aims to set the control limits to monitor
the progress during the project execution based on a state of the statistical control reference.
Vanhoucke (2019) classified the control limits project monitoring into three categories, the
static, the analytical and the statistical control limits. The first category is restricted to randomly
chosen values of the performance metrics that should not be exceeded. Rather than just setting
thresholds using arbitrary values, the second category uses analytical control limits based on
straightforward analytical calculations to better set the thresholds for project control, as the

concept of the allowable buffer consumption.

In the third category, the control charts use statistical control limits (Vanhoucke, 2019).
They can be built in different ways depending on how the state of control reference is
determined. First, the control limits can be calculated based on historical data. During the
project execution, periodic observations are plotted on the control charts. If these observations
fall within the defined limits, the project is assumed to be in-control state. Otherwise, an
abnormal periodic measurement out of the control limits indicates a schedule delay that is out

of statistical control.

Although the previous researches on the use of control charts to monitor earned values
indicators highlighted that it improves project control by providing an objectively based and
easily implemented real-time monitoring system, the use of control limits based on historical
data has been identified as a weakness of such an approach. It assumes the need to rely on
historical data collected during the early phases of the project progress, or on data from similar
projects from the past (Vanhoucke, 2019). The challenge for these methods lies in how the
similarity among projects is defined once projects are unique endeavors. Indeed, some authors
argue that the concept of similarity among projects is often vague and questionable, given the

uniqueness nature of the projects (Colin & Vanhoucke, 2014).

The need to overcome the shortcoming of relying on historical data to determine the

control limits is the rationale for the first phase of this research, which aims to answer the
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following question: how to define the state of control reference based on simulated samples for
project duration monitoring? Until that point, the previous works on the use of control charts
for project monitoring have concentrated on the use historical data to build a sample to
determine stationary control limits for the whole project life cycle. The first work to propose
the use of a simulated sample to determine the control limits was the seminal paper of Colin
and Vanhoucke (2014). They used uniform probability function to describe the uncertainty in
the duration of activities and performed Monte Carlo simulations to obtain samples of project
executions. The outputs of the simulation are samples of the performance indicators. They are
used to determine the control limits and to build the control charts to monitor earned value

observations.

In this context, Paper #1 was produced to present the first steps of a statistical project
control approach, with the control limits based on simulated samples to monitor the project
duration progress. In this method, a simulation experiment is conducted to define a desired state
of control. The acceptable deviation of each activity is defined using probability distribution
functions (PDFs) assigned to describe the uncertainty in each activity duration. Thus, many
durations X; are simulated to provide an empirical in-control distribution of each indicator at
every time ¢. The aim is to define the control limits such that they satisfy the desired
performance level. For this reason, they are referred as probability control limits and are
determined by simulated samples of each performance index in every review period ¢ and
represent a desired state of control (Votto et al., 2020b). Positive and negative deviations within
a specified range are assumed to be inherent to any project and are considered to be normal. In
contrary, some structural or systemic changes during the project life cycle can alter the initial
expected variability and move the project performance outside of the control limits. Abnormal
deviations exceeding a defined threshold should trigger further investigations and actions

(Votto et al., 2020a).

Paper #1 and Paper #3 presented the control charts with probability control limits to
monitor the schedule performance index (SPI;) and the time performance index (TPI;). It is
worth noting that in this approach the probability control limits are non-stationary, that is, for
each individual time increment ¢, new samples are simulated, and the control limit is
determined. These control charts contribute to improve the capacity of EVM and ESM to

interpret the deviations during the project execution phase by distinguishing between the
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expected deviations, when project is in statistical control, and the unexpected deviations, which

can be interpreted as evidence of a real risk of the project delays.

In this sense, this first paper provided the first steps to build a more comprehensive
approach for a project duration monitoring (presented in the following sections). Furthermore,
Paper #1 applied these control charts to monitor the duration of a capital goods projects and
triangular probability distribution functions (see Appendix F) were assigned to describe the
uncertainty in each activity duration. Until that point, it could not be found any study on the

literature with practical applications of such control charts with probability control limits

The major recommendation for future research of this phase was to measure the
performance of the control charts and to use the proposed control charts to monitor the cost
performance of projects. These research avenues built the motivation to the third and fourth

phase of this thesis, presented in Sections 3.3 and 3.4, respectively.

3.2 Phase Two: Control Charts to Monitor EDM Observations for Project Duration

Monitoring

Despite the contributions of the first study to the improvement of project duration
monitoring, it mainly utilized EVM and ESM performance indexes, which used only cost-based
data as proxies for assessing the projects duration performance. Although the durations and cost
of activities may be mutually dependent, the project duration and cost profiles are not generally
the same. The greater is their disparity, the poorer are the EVM and ESM duration performance
measures (Khamooshi & Golafshani, 2014; Votto et al., 2020a). Therefore, the need for having
a statistical control chart that uses only time-based data to monitor project duration provides

the rationale for the second and third phases of this research.

Earned Duration Management (EDM) is the most recent extension of the earned value
methodologies. It was originally proposed by Khamooshi and Golafshani (2014) to emphasize
the time dimension of projects and to address the shortcomings of EVM and ESM caused by
the usage of cost-based metrics as proxies for assessing the project duration performance
(Vanhoucke et al., 2015). While EVM and ESM measure project progress based on the
comparison between the monetary values of planned value (uLPV), actual costs (AC) and earned
value (EV), EDM completely decouples the cost dimension to measure the duration
performance of projects using exclusively time-based data for the generation of progress

indicators (Vanhoucke et al., 2015; Ghanbari et al., 2017a). In this methodology, the planned,
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actual and earned values s-curves are replaced by the total planned duration (uTPD), total actual

duration (TAD), and the total earned duration (TED), respectively.

After the seminal work of Khamooshi and Golafshani (2014), several studies have
recognized EDM’s benefits over other earned value methodologies due to its independence
from the monetary values (Batselier & Vanhoucke, 2015; Khamooshi & Abdi, 2016; Borges &
Mario, 2017; Ghanbari et al., 2017a; 2017b; Vanhoucke, 2017; de Andrade et al., 2019). For
instance, Batselier and Vanhoucke (2015) compared the performance of different deterministic
state-of-the-art forecasting approaches for project duration based on EVM, ESM, and EDM.
They concluded that EDM was a valid methodology and that DPI, could be potentially utilized
to improve the EVM and ESM methods (Batselier & Vanhoucke, 2015). Khamooshi and Abdi
(2016) used EDM in conjunction with an exponential smoothing forecasting technique to
predict the completion of a project. Their findings indicated that the EDM performance indexes
were a preferred option compared with ESM. Ghanbari et al. (2017a; 2017b) proposed fuzzy

approaches to measure the project performance based on the EDM methodology.

Nevertheless, the use of EDM performance indicators remained restrict to deterministic
project control approaches for a long time. Until the beginning of phase two, to the best of the
author’s knowledge, no study on the use control charts to monitor project duration had been
found in the literature. To cover this gap, the aim of phase two was to propose the use of control
charts to monitor the duration performance of projects using exclusively time-based indexes
from EDM, instead of the more traditional schedule performance indexes, presented before.
Similar to the previous phase, it uses probability control limits, determined by simulated
samples, to interpret deviations during the project execution by distinguishing between the

common and the special sources of variation.

Paper #2 and Paper #3 presented the use of such control charts to monitor the duration
performance index (DPI;) from EDM in a real engineering, procurement and construction
(EPC) project. In this context, the main contribution of Paper #2 lies in the introduction of
control charts with probability control limits to monitor the recent proposed DPI; in a real
project. The results suggest DPI, as a promising alternative for a project duration performance
monitoring and highlight that this probabilistic approach can improve the ability of EDM in

detecting duration deviation during a project execution.

The major recommendation of future research of this phase is the performance

comparison of EDM ‘s control charts with the more traditional schedule performance indicators



34

from EVM and ESM methodologies. This research avenue provides the rationale for the third
phase of this thesis.

3.3 Phase Three: Statistical Project Control Approach and EDM Control Charts

Performance Assessment

As an extension of previous research phases, phase three aims to propose a
comprehensive Statistical Project Control Approach to monitor the duration performance of
projects and to assess the performance of different control charts. It aims to answer the
following question: Can the use of a time-based index improve the ability of project duration
control charts to distinguish between acceptable and not acceptable variations and trigger
appropriate actions when the observed variation in project’s progress exceeds a certain

predefined threshold?

In this context, the first main contribution of paper #3 was to propose a comprehensive
statistical project control approach to monitor the duration project performance using indicators
only time based. The approach is grounded on the risk analysis (Hulett, 1996; Hulett, 2009;
Vanhoucke, 2011), the dynamic scheduling (Vanhoucke, 2012), and the control charts
(Woodall & Montgomery, 1999; Montgomery, 2009). Fig. 6 shows the flowchart that

summarizes the proposed approach.

The proposal requires a project-planning phase that consists of a baseline schedule and a
project risk analysis. It includes the project network with its activities, dependencies, and
durations, which serves as a reference point for the subsequent steps (step 1). The uncertainty
is modeled by probability distribution functions to produce estimates of the durations of
activities (step 2) and the overall risk of the entire project schedule can be evaluated by
performing extensive Monte Carlo simulations (step 3). The total duration and periodic
performance indicators are recorded in each simulation run. Thus, the empirical probability
distribution function of the project duration is used to estimate the probability that a project will
be completed by a specific date or to predict the most likely end date. The estimated forecasts
can be compared with the project targets by considering several aspects, including the contract
definition, the customer expectations, the management decisions, and the monetary or the time
constraints (step 4). In this step, the output of the simulation also provides the samples of the
performance indicators and their empirical cumulative probability functions (CDF) to

determine the probability control limits.
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Fig. 6: Statistical Project Control Approach for Duration Performance Monitoring
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If the current plan is not acceptable with respect to the project targets and the risk analysis,
it must be rescheduled (step 9) under different assumptions, and the previous steps repeated. If
the current plan is acceptable, the next step (step 5) is to build the control charts. Thus, it is used
to monitor the execution of the actual project by plotting the periodic performance indicators
(step 6). The observations that fall within the control region indicate that the project is

statistically in-control and that only common causes or expected variations are present.

In contrast, the observations that fall below the lower control limit (LCL) represent
warning signals that indicate an abnormal project behavior caused by the special variation
sources that can influence the expected result. In these situations, the project team has to
thoroughly investigate the cause of variation to determine how to bring the project back on track
(step 7). In many cases, small and punctual corrective actions are sufficient to return the project
back to the baseline schedule (step 8); however, the project team sometimes is forced to
reschedule the entire project (step 9). Meanwhile, the control charts can also be used to explore

opportunities in cases when the project proceeds better than the expected, which are represented
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by observations higher than the upper control limit (UCL) of the monitored variable. In these

cases, the project team can also decide to reschedule the project (step 9).

The application of the described method to a real-life situation was presented and
demonstrated that the ability of distinguishing between acceptable and not acceptable variations
could be improved by using the proposed statistical control charts with probability control limits

obtained by simulations instead of intuitive fixed thresholds based on the practical experience.

Paper #3 consolidated the results of Paper #1 and #2 and its second contribution lies in
the assessment of EDM control charts performance in comparison with the traditional EVM
and ESM indexes. First, an ex post facto comparison with the real project data was performed.
Furthermore, an extensive simulation experiment was conducted to assess the performance of
the proposed control chart in different scenarios. In order to determine the discriminative power
of the proposed control charts, additional out-of-control project executions, in which each
activity duration may exhibit unacceptable variations, were simulated. The analysis was
conducted in different project periods to evaluate the performance of each indicator during a

project lifecycle.

The results of the computational experiments (summarized on Section 4.1) demonstrated
generally good performance of the proposed control charts and highlight DPI; as a promising
alternative for project duration performance monitoring. It demonstrates that the use of DPI,
can improve the ability of the developed statistical control charts to distinguish between
acceptable and not acceptable variations and trigger appropriate actions when the variation of

project’s progress exceeds certain predefined statistical thresholds.

The paper pointed out that its results should be interpreted with care. The strict focus on
the duration performance of projects and lack of integration between the duration and cost
performance was a potential weakness in terms of the quality of the feedback provided to the
project team. The utilization of this method using multivariate control charts to simultaneously
monitor the project cost and duration based on the control limits produced by simulations was
recommend as an opportunity of a future research in this area, which was explored in the fifth

phase of this research (Section 3.5)
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3.4 Phase Four: Control Charts to Monitor EVM Observations for Project Cost

Monitoring

Despite the contributions of the previous studies to the improvement of project
monitoring, they concentrated exclusively on the time dimension of the project performance
and assumed that the cost variation of each activity is a linear function of its duration. They
argument that this lack of focus on the cost performance monitoring of projects was a potential
weakness of the proposed method. Consequently, emerging from the perception that there was
still a gap on the literature about the use of control charts with probability control limits to
monitor the cost performance of projects, the aim of the fourth phase was to incorporate the

cost monitoring into the statistical project control approach.

In this context, to the best of the author’s knowledge, Paper #4 was the first paper in the
literature to present the use of control charts with probability control limits determine by
simulated samples to monitor the Cost Performance Index (CPIl;), from Earmed Value
Management methodology, in a real project. As a first contribution of Paper #4, it proposed to
enhance step 3 and 4 of the previous method (Fig. 6). Thus, Monte Carlos simulation is also
used to provide the sample and the in-control empirical distribution function of CPI, at every
review period z. This output is used to determine the probability control limits of CPI; control

chart.

The study presented three scenarios of cost variation to analyze the performance of the
proposed control chart using different measures. The results showed that CPI control charts
presented a very high detection performance in all scenarios and that its efficiency increases for

projects with a higher probability of cost overrun.

3.5 Phase Five: Multivariate Control Charts to Simultaneously Monitor the Duration

and the Cost Performance of Projects

As stated by paper #4, applying separated univariate control charts to each index is a
possible solution; however, it may be inefficient and lead to erroneous conclusions, primarily
when the components of the monitored vector are mutually correlated (Montgomery, 2009).
There is a principle that states that what emerged together should be analyzed together (Mestek
et al.,, 1994). A possibility is to consider the monitoring of two or more indicators

simultaneously by a multivariate control chart which considers their relationship. A common
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method of constructing multivariate control charts is based on Hotelling's T? statistic, which is

the analogue of the Shewhart chart (MacGregor & Kourty, 1995; Montgomery, 2009).

In this context, the fifth phase of this research investigated the use of multivariate control
charts to simultaneously monitor the duration and cost performance of projects. The rationale
for this phase is twofold. First, the reliance on univariate control charts might lead to
unsatisfactory results such as an increase in the rate of false alarms, particularly when the
variables are correlated. Several studies indicated that the practice of monitoring the stability
of the process with more than one correlated quality characteristic using univariate control
charts increases the probability of false alarms of special causes of variation (El-Din et al.,

2006; Montgomery, 2009; Ryan, 2011; Santos-Fernandez, 2012; Hadian & Rahimifard, 2019).

Second, the project duration and the cost analysis have always to be performed
simultaneously once they can be correlated and the action to keep one under control can have
large consequences on the other. For instance, some decisions to minimize the cost overruns of
some activities can increase the duration of one or more activities (e.g. purchasing cheaper
material with longer lead-time). Moreover, the project team can be compelled to spend more
effort or money to compensate delays in some activities (e.g. changing a transport from sea
freight to air freight or using overtime and additional manpower to minimize a delay in some

activities).

Only two studies had proposed multivariate methods to monitor project progress in the
literature. First, Colin et al. (2015) used multivariate control charts to monitor EVM and ESM
indicators in a schedule control approach without considering the cost dimension. Later, Hadian
and Rahimifard (2019) proposed a multivariate control chart to monitor project performance
using only EVM indexes. Their control chart uses historical data to calculate a static control

limit for the entire project.

Despite the contributions of that study to the improvement of project control, it uses the
schedule performance index (SPI;) from EVM to monitor the project duration performance.
SPI; has been largely argued as not being the most accurate duration measure because it uses
cost-based data as proxies to assess project duration performances (Lipke, 2003; Vandevoorde
& Vanhoucke, 2006; Lipke et al., 2009; Khamooshi & Golafshani, 2014). The use of control
limits based on historical or progress data was also identified as a weakness of such an approach

(Vanhoucke, 2019).
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To the best of the author’s knowledge, the DPI;, from EDM, had not been used in a
multivariate statistical project control approach, and no study had been conducted on the use of
multivariate control charts with probability control limits to simultaneously monitor the

duration and the cost of projects.

In this context, the main objective and contribution of paper #4 was to propose a statistical
project control approach using multivariate T? control charts to simultaneously monitor the
duration and cost performance of projects (Fig. 7). It can be noted that it is an extension of the
method proposed by Paper #3 and uses the CPI;, from EVM, and the DPI;, from EDM, to build

a new multivariate project control statistic.

Fig. 7: Multivariate statistical project control approach to monitor project performance
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Similar as the previous phases, the duration and cost of activities are described by
probability distribution functions (PDFs) and the output of Monte Carlo simulation provides
the samples of each periodic indexes, which build the vector W,; = (DPI,, CPl,). Thus, this

output allows the calculation of the new periodic statistic TZ at any t, as follows:

-1
6 = (Wor = bow) ) (Wor — baw,) (12)
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In practice, this means that a pre-defined state of control reference exists for each review
period t represented by the mean vector poyw, and the covariance matrix Zy,;. Consequently,
and for independence with respect to distributional assumptions, the in-control empirical
distribution of TZ is used to determine the control limits for each review period . Thus, the
control limits L; of the proposed T2-type chart are determined for each period t such that
P(TZ > L;) = a, where o is the Type I error. When the project is in execution, at any t, the vector
of observations W, = (DPI,, CPI,), is available. Subsequently, the statistic T? can be obtained

as the monitored statistic, using expression (13):

¢ = (W, - Nowt)’z;vt(wt ~ How,) (13)

Thus, whenever T2 > L, , the control chart will signal. It indicates the presence of special
sources of variation, interpreted as evidence of real risk of project delays and cost overrun.

A second contribution of Paper #4 was the assessment of the proposed charts performance
in comparison with different univariate control charts and other multivariate control charts. The
results (summarized in Section 4.2) demonstrated that the proposed approach exhibited a good
performance facilitating the interpretation of actual deviations during the project execution,
distinguishing between the common and the special sources of variation. It was argued that,
although the detection performance of the new approach can be lower than some univariate
control charts (particularly, the DPI; chart), the multivariate control charts using DPI; and CPI;
can reduce the false alarms rate and exhibited much higher efficiency than all the tested

alternatives.

3.6 Phase Six: Setting the Appropriate Control Limit Width

Previous studies have focused on the construction of different control charts and in their
performance assessment. Nevertheless, a critical decision to build a statistical project control
chart is the control limit width, defined by a Type I error (o), which has a strong influence on

the control chart performance (Colin & Vanhoucke, 2014. Votto et al., 2020a).

There is a trade-off between the performance of the control chart and the control effort to
investigate the cause of the warning signals (Colin & Vanhoucke, 2015b). Consequently, the
most important feature of a control chart is the performance to identify the special sources of
variation during the project execution that enables the project team to focus only on real
deviations and avoid spending unnecessary effort to drill down to the activity level to search

for false alarms.



41

Therefore, the central question of phase six is: Which factors can influence the decision
of the appropriate control limit width to monitor project duration using EDM performance
indicators, and how to predefine the level a to determine the control limits depending on such

factors?

Previous studies only suggested directions to define the level a. Mortaji et al. (2018)
recommended setting a low value of a to reduce the effort to find out the source of the variation.
Colin and Vanhoucke (2014) showed that an appropriate choice for a should balance the risk
of project delays and the willingness to invest effort in false alarms. However, these studies do
not consider a decision-making process to select the appropriate control limit width. Instead,
they present numerical examples in which the parameter a is arbitrarily chosen. Recently, Chen
et al. (2020) proposed an algorithm to optimize the control limits. Despite the contribution of
this study, it does not consider the different project targets and uncertainty scenarios that can
influence this decision. To the best of the author’s knowledge, there was no method in the
literature to support the choice of the most appropriate width of the control limits, depending

on its targets and risk management decisions.

In this context, as an extension of the method proposed in the previous phases, paper #5
has been produced with the objective to call attention to the relevant role that the appropriate
definition of the control limit width plays in project control and in the performance of control
charts to monitor the duration of construction projects. It incorporates a decision-making
process, to define the most appropriate control limit width for a project, into the statistical
project control approach using control charts with probability control limits. Fig. 8 depicts the

proposed approach.

The first two steps followed the previous approaches. First, the definition of baseline
schedule and the risk analysis, in which the variation of each activity is limited to an acceptable
margin from the planned values. Later, the use of the simulation output is used to calculate the
periodic indicators of each run and to obtain the empirical distribution of each indicator for

every period, providing the required simulated sample to determine the control limits.

Thus, the third step introduces a new simulation experiment in the project planning phase
to determine the discriminative power of the control charts. This time, additional out-of-control
project executions, in which the activities duration may exhibit unacceptable variation, are
simulated. Different out-of-control scenarios can be proposed for the random variation of the

activity durations depending on the risk analysis conducted by the project team. The target of
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this new step is to measure the ability of the control chart to distinguish between acceptable and

unacceptable variations under different control limit widths.

Fig. 8: Statistical project control approach to set the appropriate control limit width
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In this method, the control chart performance is measured according to the generation or

not of warning signals for each project execution and identifying whether the simulation run is

completed on time or delayed. Three performance measures are used to balance the different

project targets: the detection performance, the probability of overreactions, and the efficiency.
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These performance measures were used in previous simulation project control studies to
evaluate the control charts performance (Martens & Vanhoucke, 2017; Votto et al., 2020a;
2020b). Nevertheless, to best of the author’s knowledge, they have never been used to support

setting the most appropriate width of the probability control limits in project planning phase.

Later, with the appropriated probability control limits defined, it is possible to build the
control chart and monitor the actual project execution by plotting the periodic performance
indicators and observing whether they are within the control limits or not, similar to the

approach presented in the previous phases.

Therefore, this method works as a decision-making process to support the project team in
the selection of the appropriate control limit width for a project, depending on its specific
aspects. The results of the computational experiments (see Section 4.3) confirmed the trade-off
between the performance of the control charts and the control effort to investigate the cause of
every warning signal. It highlights that the preferable choice of a is strongly influenced by
different project duration targets, risk and uncertainty scenarios estimated in the planning phase,

and the team’s risk profile.
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4 RESEARCH RESULTS

In this chapter the results are organized to cover each specific objective of the thesis. The
aim is summarizing the main findings of each research paper and to consolidate the thesis’
results. It is worth noting that the results emerge from the publications themselves and from the
interaction among them, as they follow the progressive approach presented in Chapter 3. The
objective of this chapter is not to describe each paper’s result in detail. Instead, the aim is to
briefly depict their main findings that cover each research specific objective, connecting the

papers and each research phases, in order to build the overall PhD thesis and its contributions.

4.1 Specific Objective 1: Propose and assess the use of EDM’s time-based index to

improve the performance of control charts for project duration monitoring

As described in Section 1.2 the first specific objective is to analyze how the use of EDM’s
time-based index can improve the performance of the control charts to monitor the duration
performance of projects. To accomplish this objective, the first three papers proposed the use
of different control charts to monitor the project duration performance of a real-life EPC project
project. The project network, the PDF parameters of the activity durations and costs, and the
project baseline planned duration (uBPD) and budget at completion (uBAC), considering the
deterministic planed values, are presented in Appendix G (numerical example A). For an
extended view of all project details, the reader is referred to Paper #3. The procedure in Fig. 6
is followed. Fig. 9 shows the individual control charts for SPI, and TPI, (proposed in Paper #1
and #3), and DPI; (proposed in the Paper #2 and #3).

Meanwhile, the Papers #1 and #2 recommend as future research the evaluation of the
control charts performance. In particular, Paper #2, recommended to compare the performance
of DPI; control charts with the more traditional schedule performance indicators. In this
context, and evolved from the previous two publications, one of Paper #3's major contribution
was to present a performance comparison of the recently proposed DPI; index, from EDM
methodology, with the well-known SPI; and TPI; indexes, from EVM and ESM methodologies,
respectively. The analysis was conducted in different periods to evaluate the performance of
each indicator during a real project lifecycle. First, an ex post facto analysis with the real project
data was conducted. The periodic observations of each index are plotted (* or x) in the control
charts of Fig. 9. It shows that the ability of distinguishing between acceptable and not acceptable

variations can be improved when the proposed statistical control charts with the probability
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control limits obtained by simulations are utilized instead of intuitive fixed thresholds based on
the practical experience. Furthermore, although the three control charts have detected the
deviation from the baseline schedule, the DPI; chart did it faster (over a review period of 200

days) than the other performance indexes (240 days).

Fig. 9: Individual Control Charts: DPI, TPI,, and SPI,
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For a more comprehensive analysis, a second simulation experiment was conducted to
measure the ability of the DPI; control chart to evaluate the project duration performance and
to compare it with those of the traditional SPI; and TPI; metrics. To determine the
discriminative power of the proposed control charts, additional out-of-control project execution
simulations, in which each activity duration may exhibit unacceptable variations, were
performed. Five out-of-control scenarios were proposed for the random variation of the activity

duration to simulate different uncertainty situations for the EPC project (Table 1).
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Table 1: Simulation scenarios and duration output (Paper #3)

Scenarios Distribution Parameters Simulation output
m Activities Min ML Max “ 90“‘_ Delays  On Time
ajm Cijm bim Duration  quantile % %
Planned 0 =12, 3,...,35} ajo cjo bjo 312 320 10 90
1 j={2,3,..35} ajpo cjo 1.1bj0 329 341 83 17
2 =12, 3,...,35} ajo 1.1 cjo bjo 322 330 60 40
3 =12, 3,....8} ao  ajo+ 0.8 (bjo- ajo) bjo 316 324 24 76
4 j=1{20, 21,...,27} ao  ajo+ 0.8 (bjo- ajo) bjo 316 324 22 78
5 j={8,13,15,16,17, 33} ajo bjo bjo 321 333 52 48

Source: Votto et al. (2020a)

The performance analysis is depicted in Table 2. A first finding indicated that
SPI; and TPI; control charts exhibit the same performance in all five scenarios and projects
phases. These result do not support the common assumption stating that during the last project
stage, SPI; becomes unreliable when the project completion is delayed (Lipke, 2003;
Vandevoorde & Vanhoucke, 2006; Khamooshi & Golafshani, 2014). It is clear that if the
project team uses a fixed value (such as a threshold of 0.9 or a static control limit) as the warning
level for SPI;, at the end of the project, it will lose the ability to identify schedule deviation
since SPI; converges to one. Nevertheless, if the proposed control charts with non-static
probability control limits are used to monitor the duration performance, SPI; becomes as

reliable as TPI, during the entire project lifecycle.

Table 2: Control charts performance analysis (Paper #3)

Detection Performance Probability of Overreaction Efficiency Reliability

Scenarios  1stthird 2" third Final 1t third 2" third Final 1t third 2" third Final 1t third 2" third Final
t<100 t<200 t<300 t<100 t<200 t<300 t<100 t<200 t<300 t<100 t<200 t<300

SPI, 0.47 0.77 0.91 0.14 0.32 0.47 0.94 0.92 0.90 0.25 0.38 0.54

1 TPI, 0.47 0.77 0.91 0.14 0.32 0.47 0.94 0.92 0.90 0.25 0.38 0.54
DPI, 0.48 0.76  0.96* 0.14 0.26  0.38* 0.94 0.93 0.92* 0.26 0.39 0.75*

SPI, 0.41 0.75 0.86 0.13 0.39 0.52 0.83 0.74 0.71 0.50 0.63 0.71

2 TPI, 0.41 0.75 0.86 0.13 0.39 0.52 0.83 0.74 0.71 0.50 0.63 0.71
DPI, 0.46 0.75 0.92* 0.14 0.35 0.43* 0.83 0.76  0.76* 0.52 0.64 0.82*

SPI, 0.67 0.78 0.85 0.32 0.43 0.47 0.40 0.37 0.37 0.87 0.89 0.92

3 TPI, 0.67 0.78 0.85 0.32 0.43 0.47 0.40 0.37 0.37 0.87 0.89 0.92
DPI, 0.66 0.73  0.88* 0.31 0.36 0.38* 0.40 0.39 0.42* 0.86 0.88  0.94*

SPI, 0.30 0.46 0.81 0.09 0.15 0.30 0.48 0.47 0.44 0.82 0.85 0.93

4 TPI, 0.30 0.46 0.81 0.09 0.15 0.30 0.48 0.47 0.44 0.82 0.85 0.93
DPI, 0.25 0.48 0.83* 0.08 0.14 0.23* 0.47 0.49 0.51%* 0.81 0.85 0.94*

SPI, 0.47 0.59 0.65 0.10 0.15 0.19 0.83 0.81 0.78 0.61 0.66 0.68

5 TPI, 0.47 0.59 0.65 0.10 0.15 0.19 0.83 0.81 0.78 0.61 0.66 0.68
DPI, 0.32 0.43 0.87* 0.08 0.12 0.14* 0.81 0.80 0.87* 0.56 0.59 0.86*

Note: Values in bold (*) highlight the duration index with the best performance at the end of the project for each scenario.

Source: Votto et al. (2020a)
A second result from the assessment is the good overall detection performance and the
probability of overreaction of the control charts used in the case study, which confirms the

relevance of the proposed approach. Nevertheless, the performance in terms of efficiency varies
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in each scenario. The developed control charts demonstrated higher efficiency in the scenarios
with higher probabilities of project delay. However, the control chart efficiency decreases
dramatically when the probability of a project delay is very low due to the small change in the
mean of the final duration. These results can be explained by the fact that the Shewhart control
charts are known to detect large changes in the process mean or variance caused by the special
sources of variation, however they are not efficient to detect smaller changes (Hawkins and
Zamba, 2003; Montgomery, 2009). To overcome such problem, other control charts that detect

smaller changes more efficiently can be developed as future research.

Finally, the outcome of the experimental study also indicated the general better
performance of DPI; as compared with that of the traditional SPI; and TPI; control charts
observed in all proposed scenarios. Therefore, despite the limited scope of the study (caused by
the single project simulation), it highlighted the proposed DPI; chart with probability control
limits as a promising alternative for the project duration control. These findings accomplish the
first objective and demonstrated that the use of the time-based DPI;, from EDM, can improve
the ability of the developed statistical control charts to distinguish between acceptable and not
acceptable variations and trigger appropriate actions when the variation of project’s progress

exceeds certain predefined statistical thresholds.

4.2 Specific Objective 2: Propose and Asses the Use of Multivariate T?> Control Charts

to Monitor the Duration and Cost Performance of Projects Simultaneously

As presented in previous chapters and sections, the lack of integration between the
duration and the cost performance is a potential weakness in terms of the quality of the feedback
provided to the project team. In this sense, the second specific objective of this thesis is to apply
and assess the performance of multivariate T? control charts to simultaneously monitor the
duration and the cost performance of projects. To accomplish this objective, the major
contributions of Paper #4 are threefold. First, the use of a single chart to monitor both
dimensions simplifies the project control system and decreases the false alarms rate. Second,
simulated samples were used to determine the control limits for each review period based on
the allowable cost and duration variation of each activity. Finally, the use of the multivariate
approach to monitor the recently proposed DPI;, which utilizes only time-based metrics, in
contrast with more traditional methodologies that use cost-based data as proxies to assess the

performance of a project’s duration.
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The application of the proposed method on a real-life EPC project is presented. The
project network, the PDF parameters of the activity durations and costs, and the project baseline
planned duration (UBPD) and budget at completion (UBAC), considering the deterministic
planed values, are presented in Appendix G (numerical example A). For an extended view of
all project details, the reader is referred to Paper #4. To illustrate the use of the method, the
procedure in Fig. 7 is followed and Monte Carlo simulation experiments are performed. First,
the variation was limited to an acceptable margin from the planned values. The values of the
random variables (EV;, AC;, ED;) in each simulation were recorded to calculate each periodic
performance indicators. The output of the simulation was used to calculate the in-control vector
Wow, = (CPI,; DPI,), the covariance matrix Ey,, and the samples of T2, which define the state

of control reference for each period ¢.

An ex post facto analysis of the actual project execution was conducted. In this phase, at
any t, only an individual vector W, = (CPI;, DPI,) is available. Fig. 10 shows the control
ellipse for the simultaneous monitoring of the project duration and cost progress in two review
periods (80 and 240 days) with the fixed arbitrary thresholds (0.9 and 1.1) generally used in
project control (dashed line) and the empirical upper and lower probability control limits. The
periodic observation of the actual performance of the project in periods of 80 and 240 days are
also plotted (#). Fig. 10 indicates that the ability to distinguish between acceptable and
unacceptable variations can be improved when the proposed statistical approach with the
control limits obtained using simulations is used instead of the intuitive fixed thresholds based
on practical experience. Additionally, Fig. 10 shows that the in-control ellipse to simultaneously

monitor project duration and cost can capture deviations in both dimensions.

Fig. 10: Control ellipse for the simultaneous monitoring of project duration and cost progress: t=80; t=240 days
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Source: Votto et al. (2020b)

Paper #4 pointed out the loss of the temporal sequence of the data as one disadvantage
associated with the use of the control ellipse as a single monitoring procedure. It is even more

relevant in the project environment, in which the sample of indicators and reference of state of
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control vary for each review period. This would require drawing an ellipse chart for each period.
To overcome this limitation, Paper #4 proposed plotting the periodic observations of TZ in a
multivariate control chart with an upper control limit for each ¢. Fig. 11 shows the ex post facto
T? observations of the actual project execution, using WP = (DPI,, CPI,) for each time
increment £. An observation higher than the control limit should be considered a warning signal
that indicate the presence of special sources of variation, interpreted as an evidence of actual

risk of the project delays or cost overrun.

Fig. 11: T? Multivariate control chart for simultaneous monitoring of project duration and cost progress
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For a more comprehensive analysis, a second Monte Carlo experiment was performed.
Different out-of-control scenarios of project executions were generated to investigate the
discriminative power of the proposed multivariate approach to differentiate between random
and special causes of variation in the project duration and cost. In this phase, the activity
duration and cost can exhibit unacceptable variation, larger than the planned variability. The
aim was to assess the performance of the proposed multivariate control chart W2 =
(DPIy,, CPIy)and compare it with the traditional univariate and other T? multivariate control
charts built with other variables. For this purpose, it was considered three variations in the
activity duration parameters and other three variations in the activity cost parameters, which
combined yield a total of nine out-of-control scenarios of the execution phase:

a) Duration 1: Shifts occur only on the parameters by; = 8;, X by;, 8; = 1.1;

b) Duration 2: Shifts occur only on ¢;; = §;. X cg;, 8;c = 1.1;.

¢) Duration 3: Shifts occur on by; = 8;, X by; and ¢;; = 8;. X ¢y, 6; = 6;c = 1.05.

d) Cost A: Cost parameters follow the original variability of the planning phase, and the

cost shift occurs only because of the linear impact of the duration shift.
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e) Cost B: Engineering activities: Coefficient By; is 0 and the cost Y; is related to the
duration X;, by a linear function, that is, Y; = 3;;X;; Procurement activities:
Coefficient (;, follows a uniform distribution function in the range [By;(1 —
0i0), Loi(1 + 0;9)], with 8;; = 0.2; Construction activities: Coefficient 3y; follows a
triangle distribution ~Tri (0.9 X By, Boi> 1-3 X Boi)-

f) Cost C: Coefficient ;, of cost activity i follows a triangle distribution ~Tri (0.9 X

Boi» Boi> 1.3 X Boy)-

The first result of the experiment (Table 3) was the higher detection performance and
probability of overreaction exhibited by some univariate control charts, particularly the DPI;
individual control chart. This output corresponded with the results of Montgomery (2009) and
Ryan (2011), such that even for independent variables, when the same a is used for two or more
univariate charts for simultaneously monitoring a process, the true probability of a false alarm
increased. In practice, the use of individual control charts in a joint control procedure increases
both the detection performance and false alarm rate, measured by the probability of
overreaction. This distortion in the joint control procedure can be much more severe, depending
on the correlation structure and the number of variables (Kourti and Macgregor, 1996;

Montgomery, 2009).

Therefore, although the detection performance of the univariate control charts can be
higher, the proposed multivariate control chart exhibited a lower false-positive rate (probability
of overreaction) and a significantly higher efficiency. Consequently, the use of the proposed
approach can be considered to have dramatically decreased the number of false alarms and

increased the efficiency of the project monitoring system in this experiment.

Paper #4 argued that high efficiency is the most important feature once it balances
between a high detection performance and a low probability of overreaction. It enables the
project team to focus only on the actual deviations and avoid spending unnecessary effort to

drill down to the activity level to search for false project problems.

In the proposed experiment, it is possible to note that the T2 control chart built with W2 =
(DPI,, CPI,) had the highest efficiency, even when compared with the other T? multivariate
control charts that combine CPI; with different schedule performance indexes (TPI; and SPI;).

This also indicates the potential of the DPI; to identify deviations.

Therefore, although the proposed approach must be proved under assumptions other than

those used in this experiment, this study accomplishes the second research specific objective
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and highlighted some of its potential benefits to the project control literature. First, the use of
only one chart to monitor both the project cost and duration performance, instead of a chart for
each dimension, can simplify the project control system. The study demonstrated that the
proposed charts can increase the efficiency by detecting actual performance problems and
decreasing false alarms. Second, using simulated samples to determine the control limits for
each review period support the project team to pre-define a desirable state of control based on
the allowable variation of each activity, instead of using historical or progress data to set a fixed
control limit for the entire project lifecycle. It also enables the control chart to consider the trend

of the expected project variability and in each period.

Table 3: Control charts performance analysis (Paper #4)

) Cost A CostB Cost C

T e e e ETciney e Eflcieney e EfTcincy
Shw SPI 091 0.47 0.90 0.91 0.48 0.90 0.91 0.47 0.90

Shw TPI  0.91 0.47 0.90 0.91 0.48 0.90 091 0.47 0.90

Shw DPI  0.96* 0.38 0.92 0.96° 0.39 0.92 0.96° 0.38 0.92
Dur?ﬁon Shw CPI  0.86 0.40 0.32 0.89 0.50 0.38 0.91 0.47 0.79
T W? 081 027 0.94° 0.83 0.30°  0.95* 0.86 0270 0.97°

™ W} 088 0.59 0.89 0.86 0.42 0.93 0.85 0.59 0.94

™ W2 080 0.34 0.93 0.82 0.36 0.93 0.85 0.36 0.96

™ W2 092 0.45 0.92 0.92 0.46 0.92 0.91 0.46 0.96

Shw SPI  0.86 0.52 0.71 0.87 0.50 0.73 0.87 0.51 0.72

Shw TPI  0.86 0.52 0.71 0.87 0.50 0.73 0.87 0.51 0.72

Shw DPI  0.92° 0.43 0.76 0.92° 0.42 0.77 0.92° 0.43 0.76
Duration Shw CPI  0.83 0.32 0.35 0.89 0.45 0.39 0.89 0.42 0.78
2 ™ W2 067 0.24*  0.84* 0.71 0.25*  0.86* 0.75 0.26°  0.93*
™ W! 075 0.38 0.79 0.77 0.38 0.82 0.81 0.40 0.91

™ W2 068 0.30 0.81 0.72 0.31 0.84 0.77 0.32 0.92

™ W2 078 0.38 0.80 0.79 0.39 0.82 0.78 0.41 0.90

Shw SPI  0.88 0.50 0.83 0.88 0.50 0.82 0.89 0.50 0.83

Shw TPI  0.88 0.50 0.83 0.88 0.50 0.82 0.89 0.50 0.83

Shw DPI  0.94* 0.42 0.86 0.94° 0.42 0.85 0.95 0.42 0.86
Duration Shw CPI  0.84 0.38 0.32 0.89 0.48 0.38 0.90 0.44 0.79
3 ™ W2 075 0.25* 091 0.77 0.29°  0.90* 0.81 0270 0.96*
™ W! 079 0.40 0.87 0.82 0.42 0.88 0.85 0.43 0.94

™ W2 074 0.32 0.88 0.77 0.35 0.89 0.82 0.35 0.95

™ W? 086 0.41 0.87 0.86 0.43 0.88 0.86 0.43 0.94

Notes: ® Duration index with best performance for each scenario

Source: Votto et al. (2020a)
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4.3 Specific Objective 3: Define a Decision-Making Process to Set the Most Appropriate
Control Limit Width for Project Monitoring

As described in Section 1.2 the third specific objective is to define a decision-making
process to define the most appropriate probability control limit width for project monitoring. In
order to achieve this objective, Paper #5 incorporated one additional simulation step to
determine the most appropriate control limit width for each project, into the previous statistical
project control approach using control charts based on simulated samples, to monitor project

performance indicators.

Two numerical examples of construction projects are used to illustrate the application of
the developed framework to monitor two EDM project performance indicators, the duration
performance index (DPI;), and the earned duration index (EDI;). The project networks, the PDF
parameters of the activity durations, and the project baseline planned durations (uBPD),
considering the deterministic planed values are presented in Appendix G. For an extended view
of all project details, the reader is referred to Paper #5. For both examples, the procedure in Fig.
8 is followed. Fig. 12 presents the output of the second step, the control charts with different
probability control limit width (i.e. 0=0.01. a=0.05, and 0=0.10), of a biofuel construction

project (the numerical example B).

Fig. 12: Numerical example B - Individual control chart for DPI;(a) and EDI, (b)
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Source: Paper #5

As described in Section 3.6, in the third step, the goal is to determine the best possible
threshold, considering the project targets. For this reason, a new simulation experiment is
conducted to measure the ability of the control charts to distinguish between acceptable and
unacceptable variations under different control limit widths. To determine this discriminative
power of the control charts, additional out-of-control project executions and different project

targets, in which each activity duration may exhibit unacceptable variations, are performed.
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Tables 4 and 5 present the details and the outputs of the as-planned and two out-of-control

simulation scenarios for two different planned durations for the numerical example B and A,

respectively.

Table 4: Numerical Example B: Simulation Scenarios — Duration Output

PDF Parameters Target = 380 days

Target = 390 days

Scenarios (Lognormal) Nrs u O Ontime Delays opgme  Delays
Planned Uoi 5 Ooi 10,000 378 13.8 61% 39% 68% 18%
Scenario 1.1 Uoi 5 01; = 300; 10,000 400 442 37% 63% 48% 52%
Scenario 1.2 Ui 5 0o = 40y; 10,000 416 62.7 32% 68% 41% 59%

Source: Paper #5

Table 5: Numerical Example A: Simulation Scenarios — Duration Output

PDF Parameters Target = 315 days

Target = 320 days

Scenarios (Triangular) Nrs u O Ontime Delays Oopgme  Delays
Planned @0, Cio, bio 10,000 312 6.5  68% 32%  90% 10%
Scenario 2.1 ayq, ¢jo, bjy = 1.05b;y 10,000 320 7.8  24% 76%  49% 51%
Scenario 2.2 a;g, ¢, bi; = 1.10b;y 10,000 329 9.0 5%  95%  16% 84%

Source: Paper #5

Table 6 presents the performance analysis of the numerical example B. It is important to

note that both indicators presented the same performance, despite the different absolute values

and control limits of these charts and the tendency of EDI; to converge to one at the end of the

project. This result is similar with the findings about the behaviour of SPI; and TPI,, presented

in Section 4.1.

Table 6: Control charts performance analysis — Numerical Example B (Paper #5)

Type | Error (a)

Index Duration  Index
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
Detection
0.57 0.64 0.68 0.71 0.74 0.76 0.79 0.81 0.82 0.83 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.91 0.91 0.92
Performance

380 Probabilityof ) o 07 610 0.12 0.14 0.16 0.17 0.19 0.21 0.22 0.24 0.25 0.26 0.27 0.29 0.30 0.31 0.32 0.33 0.35

Overreaction

Efficiency

0.95 0.94 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84 0.83 0.83 0.82 0.82

DPI,

Detection
Performance

0.65 0.71 0.75 0.79 0.81 0.83 0.85 0.87 0.88 0.89 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.97

390  Probabilityof ) o0 15 0.15 0.18 0.20 0.23 0.25 0.26 0.28 0.30 0.32 0.33 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43

Overreaction

Efficiency

0.89 0.86 0.84 0.83 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71

Detection
Performance

0.57 0.64 0.68 0.71 0.74 0.76 0.79 0.81 0.82 0.83 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.91 0.91 0.92

3g0  Probability of oo 67 0.10 0.12 0.14 0.16 0.17 0.19 0.21 0.22 0.24 0.25 0.26 0.27 0.29 0.30 0.31 0.32 0.33 0.35

Overreaction

Efficiency

0.95 0.94 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84 0.83 0.83 0.82 0.82

EDI,

Detection
Performance

0.65 0.71 0.75 0.79 0.81 0.83 0.85 0.87 0.88 0.89 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.97

390  Probabilityof ) o0 () 15 0,15 0.18 0.20 0.23 0.25 0.26 0.28 0.30 0.32 0.33 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43

Overreaction

Efficiency

0.89 0.86 0.84 0.83 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71

Source: Paper #5
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Fig. 13 and Fig. 14 display the performance analysis and the impact of o on the three
performance measures of the two scenarios and the two different planned durations for each
numerical example, respectively. They show the behavior of the three measures for different
values of a. Observe that, the higher the value of a, the higher is the detection performance.
Ideally, the detection performance should be as close to one as possible, meaning that
unacceptable deviations will be timely detected and the warning signals will be generated to

trigger corrective actions to put the project back on track.

In the same way, the probability of overreaction also increases with higher values of a.
Nevertheless, a low probability of overreaction is desirable because it describes how often the
project team is warned by the control system when only common cause sources of variation are
present. A low value of this measure means that the project team does not need to unnecessarily
invest time and effort in drilling down the project WBS to find the variation at the activity level
to be confined within the acceptable margins (Colin & Vanhoucke, 2014). This result confirms
that there is a trade-off between the control charts’ performance and the control effort to
investigate the cause of every warning signal. For instance, a control chart with higher detection
performance also demands more effort to investigate false alarms, due to the higher probability

of overreaction.

Fig. 13: Performance Analysis: DPI;-EDI, Control Charts — Numerical Example B (Paper #5)
a) Scenario 1.1 — Duration: 380 Days b) Scenario 1.1 — Duration: 390 Days
=——Detection Pesformance  ———Pmbabiity Overreaction  ——EMiclency e == Diciection Perfformance  =——Probabliity Overreaclion = Efficlency

: T — -—-=-—'—"_'_____-_.
0.30 /’7 —————
as0
020 /
a a; a.

pao 1 2

2 3 4 § B 7T 8 9 W M 1213 T4 15 W 1T @ 19 s 1 2 3 ¢ § & T & 9 W 1 12 13 14 15 16517 & 19 20
a: Type | error (x 10-%) a: Type lerror {x 107
c) Scenario 1.2 — Duration: 380 Days d) Scenano 1.2 — Duration: 300 Days
Loo ===Deiection Pefomance  =——Prmobadility Overreaclion  ———EMciency 200 = Defection Pefommante = Probality Overeaction  —— Effidency
T —— ) = _____—-———'_'__
LE /’/? — fm _.-"_:A- B
.50 060
0.40 .40
20 // 020
0.00 g a, 9 — Uy dy
1 2 3 4 5 B 7 8 9 W 11 12 13 14 15 16 17 @ 19 20 1 2 3 4 5 6 7 B 9 10 11 12 13 12 15 16 17 18 19 20
a: Type | error (x 10%) a- Type | error {x 109

Source: Paper #5
To integrate the dynamics of both detection performance and the probability of
overreaction, the efficiency shows the probability that the project deadline or budget is

exceeded when a warning signal is generated. In opposite to the other two measures, the



efficiency of the control chart drops with higher a values. Consequently, a lower a offers a

higher control chart efficiency.

Fig. 14: Performance Analysis: DPI,-EDI,; Control Charts — Numerical Example A (Paper #5)

a) Scenario 2.1 — Duration: 315 Days b) Scenano 2.1 — Duration: 320 Days
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It is important to note that this approach does not aim to define an optimum control limit
for a project. Instead, the objective is to support the selection of an appropriated control limit
width, depending on different project specific factors. To illustrate the decision the user has to
address in this step, examples of three potential values of o are highlighted in each scenario
(denoted as a4, a,, and a3 in Fig. 13 and Fig. 14). On the first side, a, represents a choice for
a higher efficiency compared to the detection performance. For instance, in the example B (Fig.
13), a; is set such that efficiency ~ 0.9, in all different scenarios. Nevertheless, in real life, the
user can select a so that the efficiency is even higher. In the other extreme, o, is an example of
a point in the region where the detection performance is higher than the efficiency. In this case,
a, is set such that the detection performance ~ 0.9 in all scenarios but the project team can
select values of a targeting a higher detection performance. Finally, a3 denotes the point in

which efficiency and detection performance present the same value.

This finding demonstrates that the appropriate choice of the control limit width depends
strongly on the importance of each performance measure to the project team. Their relevance
depends on the risk aversion and the willingness to spend effort in investigating potentially
false warning signals. Martens and Vanhoucke (2017) and Votto et al. (2020b) stated that in
scenarios in which overruns are completely unacceptable and ample resources (in terms of

managerial and financial effort) are available to perform a deep investigation drilling down to
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the activity level, a high detection performance is preferable. In this case, a higher value of a

should be chosen (e.g. ay).

However, if the amount of managerial and financial effort is limited during the project
execution, it is better to invest the limited available resources and effort only in periods when
the project is truly endangered. Thus, the control charts with the highest efficiency are more
valuable (Martens & Vanhoucke, 2017; Votto et al., 2020b). Colin et al. (2015b) showed that a
control chart with high efficiency can detect actual performance deviations and, simultaneously,
limit false alarms when no deviation in the final project result is observed. Thus, in these cases,

a lower value of a (e.g. a,) is preferable.

If the project team decides to balance these measures, the Type I error can be determined
at the point where the detection performance and efficiency cross each other (e.g. a3). At this

point, the control chart presents the same detection performance and efficiency.

Another finding concerns the variation of the control charts performance for different
targets relating to the final duration. The numerical examples demonstrated that for longer
planned durations (i.e. 390 days in Fig. 13 and 320 days in Fig. 14) and the same level of a, the
detection performance and the probability of overreaction are higher, while the efficiency is
lower. It means that, depending on the project target duration, a different control limit width

should be chosen to have the same control chart performance.

Moreover, in spite of the two numerical examples have confirmed the same behavior of
the performance measures for different situations, they demonstrated that the magnitude of the
impact of certain decisions are different from project to project. For instance, a smaller shift of
the planned duration on the example A generated a greater impact on the control chart’s
performance compared to the example B. This finding raises the argument that the choice of
the appropriate control limits width is project specific and that there is not an optimum level for

the control limits regardless some project particular features.

Finally, the last output concerns the performance of the control charts, depending on the
probability of project delay. The control charts present better efficiency and detection
performance in scenarios with higher probabilities of project delay and larger changes in the
project final duration mean than in the ones with lower probability of time overrun due to small
changes in the mean of the final duration. These results can be explained because while the
Shewhart control charts excel at detecting larger changes in the process mean or variance caused

by special sources of variation, their performance decreases in the detection of smaller changes
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(Hawkins & Zamba, 2003; Montgomery, 2009). Consequently, different risk analysis scenarios
in terms of duration variation would recommend a different decision on the control limit width.
For instance, observe that the value of a3, where the control charts present the same detection

performance and efficiency, can change in different simulated scenarios.

With the appropriated probability control limit width defined, it is possible to build the
control chart and to monitor the actual project execution by plotting the periodic performance

indicators and observing whether they are within the control limits or not.

Despite its limited scope, the proposed method and results accomplish the last specific
objective of defining a decision-making process to set the most appropriate control limit width,
such that it timely triggers corrective actions only when real deviations are identified and,
simultaneously reduces the effort in further investigations of false alarms. The study
demonstrated that this choice depends on the project targets, risk and uncertainty scenarios
chosen by the team, the project team profile regarding risk aversion or tolerance, and the

available resources to investigate any project deviation.
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S CONCLUSIONS

This PhD thesis sought to propose a statistical project control approach to monitor the
cost and duration performance of projects. It is a paper-based thesis and its outcomes are five
papers, presented in the Part II of this document. The research approach adopted by this work,
as well as by its papers, starts with a literature review to investigate the evolution and trends on
the application of statistical process control for a project monitoring. Thus, the statistical project
control method was constructed by a progressive study in each phase followed by a quantitative
research approach, using simulation experiments and single or multi-case studies to illustrate

the application and to assess the performance of the method.

5.1 Research Contributions

Previously, Chapter 3 and Chapter 4 presented the main contributions and findings of
each research phase and publication. The contribution of each paper is deeper discussed in each
paper (see Appendix A - Paper #1, Appendix B - Paper #2, Appendix C - Paper #3, Appendix
D - Paper #5, and Appendix E - Paper #5). Based on the findings of these publications, this
thesis was able to combine the project management body of knowledge and the SPC literature

to provide contributions to an emerging Statistical Project Control field.

In summary, the literature review highlighted the control charts with probability control
limits based on simulated samples as a powerful method to set the thresholds to distinguish
between acceptable and not acceptable variation on the project performance. However, there
were relevant gaps on the existing literature, which was limited to the use of cost-based data to
exclusively monitor the duration dimension of project performance. To address such gaps, this
work suggested different solutions, using univariate or multivariate approaches, to monitor the
cost and duration performance of projects, and proposed a process to set the most appropriated
control limit width. Numerical examples were used to illustrate the application on construction
projects and simulation experiments results demonstrated that the proposed methods exhibit
good performance facilitating the interpretation of actual deviations during project execution,

distinguishing between common and special sources of variation.

The major research contributions of the thesis emerge from the papers’ results presented
in Chapter 4, which are summarized in the following major points. First, using simulated
samples to determine the probability control limits supports the project team to pre-define a

desirable state of control for each review period based on the allowable variation of each



59

activity, instead of using historical or progress data to set a fixed control limit for the entire

project lifecycle.

Second, the use of cost based data to monitor the duration performance of projects has
been highlighted as a shortcoming of previous methods. To address this problem, this work
proposed the exclusive use of time-based data, from the recently proposed Earned Duration
Management (EDM), to monitor the project duration performance using control charts with
probability control limits. It demonstrated that the univariate control chart using the new DPI,
from EDM, outperformed the traditional SPI and TPI charts in all simulated scenarios (papers
#3 and #4). Although further proof under assumptions other than those used in these
experiments is necessary, this work highlighted EDM as a promising alternative for project
duration control. Furthermore, the use of DPI for duration monitoring brings additional
advantages. Different from the more traditional indexes (SPI and TPI), DPI does not use the
monetary value of EV in its formula. This makes this index less dependent on the cost
dimension that also uses EV to calculate the CPI. Consequently, it ensures the decoupling of

both dimensions and a lower correlation between them.

Third, the lack of integration between the duration and cost performance has been
identified as a potential weakness in terms of the quality of the feedback provided to the project
team. Therefore, a comprehensive project control system must consider the monitoring of both
project performance dimensions. In this context, this research proposed to use of such control
charts with probability control limits to monitor the cost performance of projects using Earned
Value Management (EVM) observations. Furthermore, as a fourth contribution, this research
proposed to monitor the duration and cost dimensions simultaneously, using multivariate T?-
type control charts. It was argued that this alternative is preferred, once both dimensions can be
correlated and the action to keep one under control can have large consequences on the other.
For instance, some decisions to minimize cost overruns can increase the duration of one or more
activities. Moreover, the project team can be compelled to spend more effort or money to

compensate delays in some activities.

Finally, this research calls attention for the relevant role that the appropriate choice of the
control limit width plays to the performance of the control charts for project monitoring. To
address this concern, an additional simulation step assesses the performance of the control
charts under different targets and scenarios to support the choice an appropriate type I error o.

The aim is to set the control limits such that to enable the project team drilling down to lower
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project levels only when it is really necessary, avoiding investing time and effort to investigate
false alarms. It is important to note that this approach does not aim to define an optimum control
limit for a project. It is the authors’ belief that there is not an optimum control limit width
regardless of specific factors, such as the project targets and risk management scenarios. It is
clear that only the project team can propose specific scenarios to be simulated in the third step
of this method. Instead, the objective is to propose a statistical approach to support the user to
select the appropriate control limit width, depending on project targets, risk and uncertainty
scenarios estimated by the team, project team profile regarding risk aversion or tolerance, and

available resources to investigate any project deviation.

To conclude, the author believes that the results presented in each publication and
compiled in this thesis answer the Research Question (Section 1.1): The use of control charts
with probability control limits to monitor the duration and cost of projects can improve the
ability to distinguish between acceptable and not acceptable variations, and trigger appropriate
actions when the observed variation in project’s progress exceeds a certain predefined
threshold.

5.2 Research OQutput: Framework for Statistical Project Control

As indicated in Section 1.2, the general objective of this work is to propose statistical
project control approach with probability control limits to monitor project performance.
Therefore, as the final results of the thesis, Fig. 15 consolidates the approaches presented in the
different papers of this thesis and depicts the proposed framework. It is worth noting that the

proposed method can be completely or partially used, according to the users’ needs.

In the first step, the project network and baseline schedule are defined as a reference point
for the subsequent phases. The uncertainty is described by probability distribution functions
assigned to produce estimates of each activity duration and cost. It is important to note that
different probability distribution functions can be used (e.g. normal, lognormal, uniform,
triangular, or beta distributions) to describe the behavior of activity duration. In the second step,
the overall project risk is evaluated using a first Monte Carlo simulation. In this step, only the
allowable variability for activity duration and costs are used to generate a sample of in-control
project execution. The result is used to derive the empirical CDF of the final project duration
and cost. This information is the base for an integrated risk analysis to estimate the probability
that the project will be completed within a specific date and budget or to predict the most likely

end date and budget at completion for different levels of certainty.



Fig. 15: Statistical project control approach
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In the third step, the periodic values of each indicator are recorded at each time increment
t and the possible S-curves are generated for each simulated execution. The results are two
stochastic S-curves, one for the cost (EV and AC curves) and one for the duration (TED curve).
Thus, the periodic values of DPI; and CPI; can be calculated for each run and the empirical
distribution of each indicator can be obtained for every period, providing the required simulated
samples to determine the control limits. It is worth noting that in this approach the probability
control limits are not static. Then, for each time increment ¢, new simulated samples are

generated, and the control limits are determined and the univariate control charts can be built.

In the fourth step, the multivariate control chart can be built. The in-control empirical
CDF of the individual indicators are used to build the empirical distribution of the vector

Wi, = (DPly;, CPlg,). Thus, the mean vector, Mow, = (DPI,, CPI,,) and the covariance

matrix can be calculated. With this information, it is possible to derive the empirical in-control
distribution function of the statistic T, using expression (12), and to determine the control

limits of this chart.

In Step 5, a new simulation experiment can be performed to determine the discriminative
power of the control charts. This time, additional out-of-control project executions, in which
the activities duration may exhibit unacceptable variation, are simulated. Different out-of-
control scenarios can be proposed for the random variation of the activity durations and cost
depending on the risk analysis conduct by the project team. Examples of possible scenarios are
changes in the standard deviation, the mean, or any other parameter of the distribution function
assigned to each activity. The target of this step is to measure the ability of the control chart to
distinguish between acceptable and unacceptable variations under different control limit width,

defined by a Type I error ().

The control chart performance is measured according to the generation or not of warning
signals for each project execution and identifying whether the simulation run is completed with
or without time and cost overruns. Three performance measures are used for this evaluation:
the detection performance, the probability of overreactions, and the efficiency. Thus, it is

possible to balance different project targets.

It is important to note that there is not an overall recommendation on the adequate level
of each performance measure that is worth for every project. There is a trade-off between the
performance of the control chart and the control effort to investigate the cause of the warning

signals (Colin & Vanhoucke, 2015b). Consequently, it is significant to set the most appropriate
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control limit width, defined by a type I error (a), such that it allows the trigger of a corrective
action only when real deviations are identified and, simultaneously, reduces the effort in further

investigations of false alarms.

With the appropriated control limit width defined, it is possible to build the control charts
(univariate or multivariate) to monitor the actual project by plotting the periodic performance
indicators and observing whether they are within the control limits or not. At any time increment
t, only one individual observation of each indicator is available (DPI;, CPI;). If the multivariate
T2 control chart is used, the statistic T? can be obtained as the monitored statistic, using

expression (13).

The observations that fall within the control region indicate that the project is statistically
in control and that only common causes or expected variations are present. In contrast,
observations out of the control limits represent warning signals that indicate abnormal project
behavior caused by the special variation sources that can influence the expected result. In these
situations, the project team must drill down to lower levels of the WBS to thoroughly investigate
the cause of variation to determine how to bring the project back on track. It is important to
note that a deeper discussion on the corrective actions or contingency plans is not within the

scope of this work.

5.3 Limitations and Implication for Theory and Practice

The results presented in this thesis should be interpreted with care as they were obtained
from few project examples and present some weaknesses and limitations. Our simulation model
assumes that the planned and earned values of activity i (UPV;; and EV;;) follow a linear trend,
beginning at zero and reaching the total planned duration upon activity completion. Although

it is a common assumption in a project simulation, other models can be tested in future studies.

Another limitation is the use of few network structures owing to the small numbers of
case studies. The network structure can be accessed by the serial-parallel (SP) indicator
(Vanhoucke et al., 2008) and the real projects presented in the thesis’s papers have strong
parallel networks (SP < 0.30), which is an important characteristic of the capital goods and
construction projects studied in this work. It should be noted that Colin and Vanhoucke (2014)

did not observe any significant effect of such SP structures on the performance of statistical
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project control charts to monitor the performance of projects. Nevertheless, in future studies,

different project types with other network structures can be used to verify this approach.

The amount of statistical analysis and computerized methods to generate and analyze the
huge amounts of data can be considered a potential weakness of this approach compared to
other project control methods. Indeed, this approach assumes a certain shift from the ad-hoc
management by experience to a more data-driven management approach, as indicated by
Vanhoucke (2019). Nevertheless, it is the believe of the author that, although the proposed
approach requires a higher level of maturity to manage projects in such a data-driven way, the
main concepts used in the approach (e.g. Monte Carlo simulation and risk analysis) are already

used in project control and are well known to the project management community.

Moreover, the EDM methodology has recently received attention in the academic
literature and in practical settings. Its benefits over other earned value methodologies, due to its
independence from monetary values, has been recognized by several studies. Consequently, it
is the author’s belief that the EDM calculation will soon be incorporated into commercial
project management software packages, what will facilitate the adoption of EDM in the daily
project business. Actually, some authors already suggested ways to adapt commercial software

to handle EDM calculation (Vanhoucke, 2017).

Therefore, the author hopes that this work can contribute with academic researchers and
project management professionals as the developed framework can be utilized in different

project environments and practically implemented in real-life projects.
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Introduction

Large projects in the engineer-to-order capital goods industry nor-
mally am engincering, procurement and construction (EPC) pmj-
ects, which can be complex one-of-a-kind pmdnct development
projects. This type of prject increasing by has been adopted incom-
petitive intemnational markets, including 32% of the entire construc-
tiom sector (Wang o al 2006; Zhang ot al. 200 71 Howewer, it faces
wanous challenges due to the high interdependence of activitiss,
phase overlaps, work frag complex organizational stric-
ture, and uncertainty in the prediction of desired outcames ( Yeo and
Ning 2002; Yeo and Ning 2006), Therefore, project control repre-
scnts 4 major part of project organization aimed at overcoming
these challenges. In particular, it evaluates the actual pmject per-
formance by comparing it with a plan or baseline schedule, meas-
uring ulfimate deviations, and taking necessary actions to comect
these deviations as early as possible to ensure that the project is
completed on time (Accbes ot al, 2014; Hazr 201 5; Acches et al,
2015; Willens and Vanhoucke 2015).
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Awidely used managerial methodology for project performance
monitoring is eamed value management (EVM), which integrates
cost and schedule control I the same fmmework and provides per-
Formance indexes that enable pmject teams to anticipate cost over-
runs and project delays (Pagjares and Lopez-Paredes 2011; Calin
and Vanhoucke 2014; Khamooshi and Golafshani 2014; Acches
etal 2004, 2015). Initially, EVM focused mainly on costs, but at-
tention gradually shifted to duration control, partially due to Lipke
(2003}, which intmduced the concept of camed schedule manage-
ment (ESM) {as an extension of EVM) to improve the monitoring
of the actual pmject progress.

Eamed dumtion management (EDM) is the most rcent exten-
sion of the carned value methodologics. It was originally proposed
by Khamoozhi and Golafshani (20 14) to emphasize the time dimen-
sion of projects and to address the shortcomings of EVM and ESM
caused by the nse of cost-based metrics as proxies for assessing the
pmject duration performance {Vanhoucke et al. 2015). The EDM
foundation lies in the exclus ive use of time-hased data for the gen-
ention of progress indicaiom ( Vanhoucke etal, 2005; Ghanbari et al,
2017h). Some studies used EDM as an alternative project pogress
contml technique (Khamooshi and Golafshami 2014; Batselier
and Vanhoucke 2015; Ghanbari et al. 20172, b; Khamooshi and
Abdi 2016).

Despite the great success of the camad value methodologics,
they often use intuitive thresholds based on the practical experience
to distinguish between acceptable and wnacceptable variations
fmm the project haseline schedule, which was highlighted as one
of the main shoricomings of EVM and its extensions (Colin and
Vanhoucke 2014; Colin and Vanhoucke 20154 Salchipour et al,
2016), To overcome this problem, some studies proposed nsing
contml chans to deect abnormal signak by monitoring various
EVM performance indexes and thus differentiating between the es-
sential problems and those that do not influence project sucoess
(Bauch and Chung 2001; Wang et al, 2006; Leu and Lin 2008;

J. Conatr. Eng. Manage.

1. Constr. Eng. Manage., 2020, 146(3): 04020001




72

APPENDIX D: Paper #4: Multivariate control charts using Earned Value and
Earned Duration Management Observations to Monitor Project Performance

Journal

Computers & Industrial Engineering

Authors

Rodrigo Votto; Linda Lee Ho; Fernando Berssaneti

Complete
reference

Votto, R., Ho, L. L., & Berssaneti, F. (2020). Multivariate control charts using
Earned Value and Earned Duration Management observations to monitor project
performance. Computers & Industrial Engineering, 148, 106691.

DOI

https://doi.org/10.1016/j.cie.2020.106691

Computers & Indastrial Engineering 1448 {2020) 106691

Contents lists awailable at SoienceDirece

Computers & Industrial Engineering

Joumal homepege: wiww. elasv] er oo m/locetssle =t

Multivariate control charts using earned value and earned duration

management observations to monitor project performance

Rodrigo Votto |, Linda Lee Ho, Fernando Berssaneti

Deprrumiann de Frpashins de Produgdo, Untersilads & 540 Fedo, 5F, Bzl

ARTICLE INFO ABSTRACT

ey

Sntistheal project conerol

T* eontral cher

Monte Cardo dimulation
Farned duraion Sanagmnt

This paper presents o statistical project control approach using multivariste T controd charts o simultanscnsdy
manitor the duration and cost performance of projects. The approach wses the cost performance index, from
eamsd value management, and the durabion performance index (DF1) from eamed duration manngement, to
bagild the monitored statistic.

The major contribations of thiz study are threefold, First, the use of a single chart to monitor both dimensions

simplifies the project control system and decreasss the false alarms rate. Second, a simulated sample was osed to
determine the control limits for each review pericd based on the allowable vamation of each activity. Finally, the
use of the multivariate approach to monitor the new D, which uifllzes caly time-based metrics, i contrast with
mare traditicnnl methedologies that use cost-based data as proxies to assess the performance of & project’s

duration.

The results of computational experiments demonstrate the good sficiency of the prapased T2 control chart
and suggest the new approach is & potentially promising altemative for simulfanesusly monitoring a project’s

cast and duration performance.

1. Introduetion

The muccesn of projects Emnbamlhemrgelofaevu:u discuscions in

Carvatho, Pamh, & de Souzs Sido, 2015; Macesa & B

Although the traditional view of project success iz a mﬂ.ud:.ulgnmnﬂal
conetruct, it iz atill ascociated with fulfilling time, cost, and quality ob-
jectivra (Oray, 9001; Larson & Oobeli, 1988: Ling, 3004). Three di-
manrions, koewn az the ‘iron triangles’, though often crisicized, are zdll
conzidered central to the measurement of project succesz (Ber
Carvatha, 3015; Papk elds, Beise, & Jhuan, 2010} Bopde, U -
z=nberger, and Joby (2015) highlighted thae two key criteria of project
mansgement guccess are the sxtent to which the project iz delivered on
time and within budget.

I thiz context, thiz paper focures on monitoring the performance of
the time and coat componeanta of the iron triangle Project contzol aims to
evaluate the actual progress performance of 2 project by comparing it
with a baseline acheduling and budpet and identifying evenmal de-
wiationz. Waming signals chould be generated to rigger the neceszany
early actions to correct these deviations to ensure that the projec: iz
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completed on time and within budget [Azsbez, Paj
Paredes, 2014
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Bamed value management (EVA) and sarned schedule management
{ESM) are widely uzed managerial methodologies to monitor project
performance. They provide performance indexes
teamn to anticipate project deviations (Acebes

Golin & Vanhoucke, 2014 Hazr, 2015 Willerms &
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Paredes 111 Maore recently, Fhamoothi aml Oolafchani (2014)
inoduced the eamed duration management (EDM) to emphasize the
dhuration Jimenrion of projects and addres: some chortcomingz of EVM
and ESM caused by the we of coce-baced mesics ao proxies to asses: the
project durarion performance (Vanhoucke, Andrade Salvaterma, & Bac-
pelier, 2015 Votto, Lee Ho, § Bemsaneti 20200, It foondation lies in the
excluzive woe of tme-bazed damm o generate duradon indicatorz
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APPENDIX F: Probability Distribution Functions Used in This Work

F.1. Triangular distribution

A random variable X follows a triangular distribution (i.e. X~ Tri (a,b,c), with
parameters a (minimum), b (maximum), and ¢ (most like), if its probability density function
(PDF) is:

Oif X<aand X > b
{ 2(X —a)
f)=4b-a)c-a)
| 2(b-X)
(b-a)(b-c)
Its cumulative distribution function (CDF) is:

ifa <X<c

ifc <X<b

( Oifx<aandlif X>b
X —a)?

Fx) —(b—a)(c—a)lfa <X=<c
X -b?
—mlf c <X<bh
Its expected value and variance are respectively:
a+b+c a?+b%*+c?—ab—ac—bc
EX) = WVar(X) = 18

F.2. Lognormal distribution
A random variable X follows a lognormal distribution (i.e. X~ Lognormal (u,c?)) if

the logarithm of X is normally distributed with mean u and variance a2 (i.e. In(X) ~N (1, 62)).

Its probability density function (PDF) is:

1 | — u)?
flx) = exp [— (nGe) — )" n();)az #) ]

xoV2m

Its cumulative distribution function (CDF) is:

FG) = @ <(ln x) — u)
o

where @ is the CDF of the standard normal distribution (i.e., N(0,1)).

Its expected value and variance are respectively:

E(X) =exp (u + 072), Var (X) = exp(2u + 0?)(exp(c?) — 1)



APPENDIX G: Numerical Examples: Project Networks and PDF

Parameters

Table G. 1: Numerical Example A: Project Network and PDF Parameters for Activity Durations and Costs

.. DURATION (days) COST (x 1.000 monetary unit)
Activity .
i Predecessor  Min ML Max uBPDi = o Inflection B, B, uBPVi
(@ () (b)) (ath+e)/3 o a (x1000)
1 - Engineering
2 10 15 20 15 2.0 0.5 0 1.0 15
3 2 25 30 35 30 2.0 0.5 0 2.5 75
4 2 20 30 40 30 4.1 0.5 0 4.5 135
5 34 45 55 65 55 4.1 0.5 0 4.5 248
6 3 60 70 80 70 4.1 0.5 0 7.5 525
7 3 80 90 100 90 4.1 0.5 0 3.5 315
8 2 50 70 90 70 8.2 0.5 0 10.0 700
9 - Procurement
10 6 20 25 30 25 2.0 0.5 650 0.0 650
11 6 70 85 100 85 6.1 0.5 4200 0.0 4200
12 7 70 85 100 85 6.1 0.5 3675 0.0 3675
13 8 70 80 90 80 4.1 0.5 7000 0.0 7000
14 8 100 110 120 110 4.1 0.5 75 0.0 75
15 8 70 80 90 80 4.1 0.5 500 14.4 1652
16 15;13 25 30 35 30 2.0 0.5 100 6.0 280
17 16 12 15 18 15 1.2 0.5 0 6.0 90
18 2 170 190 210 190 8.2 0.5 300 1.8 642
19 —Construction
20 3 45 55 65 55 4.1 0.5 300 4.8 564
21 20 50 60 70 60 4.1 0.5 550 54 874
22 4 45 55 65 55 4.1 0.5 575 6.0 905
23 5;22 80 95 110 95 6.1 0.5 675 54 1188
24 21 20 25 30 25 2.0 0.5 275 3.6 365
25 24 18 20 22 20 0.8 0.5 275 3.6 347
26 21 35 40 45 40 2.0 0.5 287 4.8 479
27 24 30 40 50 40 4.1 0.5 275 3.0 395
28 10 35 45 55 45 4.1 0.5 75 8.0 435
29 24 ;28 75 85 95 85 4.1 0.5 125 9.6 941
30 11;25 75 80 85 80 2.0 0.5 100 8.0 740
31 12;27 45 60 75 60 6.1 0.5 375 25.0 1875
32 1423 12 15 18 15 1.2 0.5 0 2.0 30
33 32;17;18 50 60 70 60 4.1 0.5 75 7.0 495
34 29 ;33 12 15 18 15 1.2 0.5 0 3.0 45
35 34;30;31 12 15 18 15 1.2 0.5 0 3.0 45
36 35 0 0 0 0
TOTAL WIPD =1 825 days UBAC = 30 000

uBPD = 300 days

75

Notes: The data is adapted from a real capital equipment EPC project of an industrial plant in South America. In
this work, the acceptable variation is modeled using Triangular PDF to estimate the in-control activity durations.
Activities 1, 9, 19, and 36 presented are dummy activities without duration and cost and are used only to

organize the baseline schedule.
Source: Votto et al. (2020b)
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Table G. 2: Numerical Example B: Project Network and PDF Parameters for Activity Durations

Actiivity Predecessor n [
1 249 3.7
2 51.7 8.3
3 2 200 6.7
4 3;23 65 1.7
5 13;15:4 52 9.1
6 2 50 6.7
7 6 149.2 10.8
8 14 5 0.3
9 2 85 1.0
10 9 83.5 5.1
11 9 100 1.3
12 2 175.2 2.1
13 12;20;10;23 65 11.7
14 2 135 1.5
15 5,7;10;11;23 34.2 5.8
16 2 220 29
17 16;23 20.9 12
18 2 255 8.3
19 18;17;23 25 1.7
20 9;6 1142 5.8
21 3 20 0.6
22 4 20.8 1.0
23 10;1 1.7 0.7

TOTAL uTPD = 2177 days

uBPD = 360 days
Notes: The data belong to a biofuel refinery construction project, adapted from an empirical database presented
by Batselier and Vanhoucke (2015). In this work, the acceptable variation is modeled using Lognormal PDF to
estimate the in-control activity durations.

Source: Paper #5




