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ABSTRACT 
 

This thesis proposes a statistical project control approach to monitor the cost and duration 

performance of projects. The literature review on the application of statistical process control 

for project monitoring pointed towards the use of control charts with control limits based on 

simulated samples as a powerful method to set thresholds to distinguish between acceptable 

and not acceptable variation on the project performance. However, the existing literature on the 

use of such charts is still very incipient and was limited to the use of cost-based data to monitor 

exclusively the duration dimension of project performance. 

Therefore, addressing the key theoretical gaps, the statistical project control approach proposed 

in this thesis brings four major contributions to the project management body of knowledge and 

to the statistical process control literature. First, the exclusive use of time-based data, from the 

recently proposed Earned Duration Management (EDM), to monitor the project duration 

performance using control charts with probability control limits. Second, the use of such control 

charts to monitor the cost performance of projects using Earned Value Management (EVM) 

observations. Third, the use of multivariate control charts to simultaneously monitor the 

duration and cost performance of projects. Finally, a decision-making process to set the control 

limits such that they enable the project team drilling down to lower project levels only when it 

is really necessary, avoiding investing time and effort to investigate false alarms. 

This is a paper-based thesis and its outcomes are five papers. In this sense, this document brings 

the findings and methodological aspects of each publication as well as the integration among 

them to establish a holistic view on the proposed statistical project control approach.  

The output of the research is a framework to build univariate and multivariate control charts to 

monitor the cost and duration performance of projects and a process to set the most appropriate 

probability control limits. Numerical examples were used to illustrate the use of the method on 

real-life construction projects and simulation experiments were performed to assess the 

performance of the proposed charts. The experiment results demonstrated that the proposed 

methods exhibit a good performance facilitating the interpretation of the actual deviations 

during the project execution, distinguishing between the common and special sources of 

variation.  

KEYWORDS. Project Management; Statistical Process Control; Risk Analysis; Earned 

Value Management; Earned Duration Management; Simulation  



 

 

RESUMO 
 

Esta tese propõe uma abordagem de controle estatístico de projetos para monitorar o 
desempenho de custo e duração de projetos. A revisão da literatura sobre a aplicação de controle 
estatístico de processo para monitoramento de projetos indicou que a utilização de gráficos de 
controle com limites de controle baseados em amostras simuladas pode ser um método 
poderoso para distinguir variações aceitáveis e não aceitáveis de desempenho na execução de 
projetos. No entanto, a literatura existente sobre o uso de tais gráficos no gerenciamento de 
projetos ainda é muito incipiente e se limitava ao uso de indicadores baseados em custos para 
monitorar exclusivamente a dimensão da duração do desempenho dos projetos. 

Portanto, identificadas as principais lacunas teóricas, a abordagem de controle estatístico de 
projetos proposta nesta tese traz quatro contribuições principais para o corpo de conhecimento 
de gerenciamento de projetos e para a literatura de controle estatístico de processos. Em 
primeiro lugar, o uso exclusivo de indicadores baseados no tempo, da metodologia proposta 
mais recentemente Earned Duration Management (EDM), para monitorar o desempenho da 
duração de projetos usando gráficos de controle com limites probabilísticos de controle. Em 
segundo lugar, o uso de tais gráficos de controle para monitorar o desempenho dos custos dos 
projetos, usando observações da metodologia Earned Value Management (EVM). Terceiro, o 
uso de gráficos de controle multivariados para monitorar simultaneamente o desempenho de 
duração e de custos de projetos. Finalmente, um processo de tomada de decisão para definir 
mais apropriadamente os limites de controle de forma que possibilitem à equipe do projeto 
investigar os detalhes de cada atividade do projeto apenas quando for realmente necessário, 
evitando investir tempo e esforço para investigar alarmes falsos. 

Esta é uma tese em formato de coletânea de artigos e seu resultado está baseado em cinco 
artigos. Nesse sentido, este documento traz os achados e aspectos metodológicos de cada 
publicação, bem como a integração entre eles, para estabelecer uma visão holística sobre a 
abordagem de controle estatístico de projetos proposta.  

O resultado da pesquisa é um modelo para construir gráficos de controle univariados e 
multivariados para monitorar o desempenho de custo e duração dos projetos e um processo de 
tomada de decisão para definir os limites probabilísticos de controle. Exemplos numéricos 
foram utilizados para ilustrar o uso do método em projetos de construção e de bens de capital e 
experimentos de simulação foram realizados para avaliar o desempenho dos gráficos propostos. 
Os resultados dos experimentos demonstraram que os métodos propostos apresentam um bom 
desempenho o que facilita a interpretação dos desvios reais durante a execução do projeto, 
distingue entre causas comuns de variação, que ocorrem quando o projeto está em controle 
estatístico, e causas especiais (assinaláveis) de variação, que devem ser interpretadas como 
evidências de um risco real de atraso ou desvio de custos do projeto. 
 
Palavras-chave. Gerenciamento de projetos; Controle estatístico de processo; Análise de 
risco; Earned Value Management; Earned Duration Management; Simulação  
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PART I – INTEGRATIVE THESIS OVERVIEW 
 
1 INTRODUCTION 
 

This thesis proposes a statistical project control approach to monitor the cost and duration 

performance of projects. In order to accomplish this objective, the research has followed a 

progressive approach, starting with the literature review on the evolution and trends on the 

application of statistical process control (SPC) for project monitoring and on the earned value 

methodologies used for project control. 

The outcomes of this initial stage have pointed towards the key theoretical gaps in the 

literature and have driven the following steps of the research. The use of control charts with 

probability control limits based on simulated samples was identified as a powerful method to 

set thresholds to distinguish between acceptable and not acceptable variation on the project 

performance. However, the existing literature on the use of such control charts for project 

monitoring is still very incipient and it was limited to the use of cost-based data to exclusively 

monitor the duration dimension of project performance. 

Therefore, addressing the main gaps, the statistical project control approach proposed in 

this thesis brings four major contributions to the SPC literature and to the project management 

(PM) body of knowledge. First, the exclusive use of time-based data, from the recently 

proposed Earned Duration Management (EDM), to monitor the project duration performance 

using control charts with probability control limits. Second, the use of such control charts to 

monitor the cost performance of projects using Earned Value Management (EVM) 

observations. Third, the use of multivariate control charts to simultaneously monitor the 

duration and cost performance of projects. Finally, the proposal of a decision-making process 

to set the most appropriate control limit width such that it enables the project team drilling down 

to lower project levels only when it is really necessary, avoiding investing time and effort to 

investigate false alarms. 

This is a paper-based thesis and its outcomes are five papers. The three journal papers, 

that are the core of this study, cover each of the research specific objective in a comprehensive 

manner. Complementarily, two conference papers provided the bases of the literature review 

and supported the first research steps and objective. In this sense, this document brings the 

findings and methodological aspects of each publication as well as the integration among them 

to establish a holistic view on the proposed statistical project control approach.  
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The research proposed different solutions, univariate or multivariate approaches, to 

monitor the cost and duration performance of projects and a framework to set the most 

appropriated control limit width. Numerical examples were used to illustrate the use of the 

method on real-life construction projects, and simulation experiments were performed to assess 

the performance of the proposed charts. The experiment results demonstrated that the proposed 

methods exhibit a good performance facilitating the interpretation of the actual deviations 

during the project execution, distinguishing between the common and special sources of 

variation.  

 
1.1 Research Problem and Justification 

 
Project control aims to measure and evaluate the actual progress and the performance of 

a project by comparing it with a baseline scheduling, analyzing the eventual deviations, and 

taking necessary early actions to correct these deviations to ensure that the project is completed 

on time and within budget (Acebes et al., 2014; 2015; Hazir, 2015; Willems & Vanhoucke, 

2015). 

A widely used managerial methodology for project performance monitoring is the Earned 

Value Management (EVM), which integrates the cost and the schedule control in the same 

framework and provides performance indexes that enable the project teams to anticipate the 

cost overruns and the project delays (Pajares & López-Paredes, 2011; Colin & Vanhoucke, 

2014; Khamooshi & Golafshani, 2014; Acebes et al., 2014; 2015). Initially, EVM focused 

mainly on costs. Afterwards, the attention has gradually shifted to the duration control partially 

due to the study of Lipke (2003), which introduced the concept of Earned Schedule 

Management (ESM), as an extension of EVM, to improve the monitoring of the actual project 

progress.  

More recently, Khamooshi and Golafshani (2014) introduced the Earned Duration 

Management (EDM) to emphasize the duration dimension of projects and address some 

shortcomings of EVM and ESM caused by the use of cost-based metrics as proxies to assess 

the project duration performance (Vanhoucke et al., 2015; Votto et al., 2020a). Its foundation 

lies in the exclusive use of time-based data to generate the duration indicators (Vanhoucke et 

al., 2015; Ghanbari et al., 2017a). 
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Despite the great success of these methodologies, they often utilize intuitive thresholds 

based on the practical experience to distinguish between the acceptable and the not acceptable 

variations from the project baseline schedule, which was highlighted as one of the main 

shortcomings of EVM and its extensions (Colin & Vanhoucke, 2014; Colin & Vanhoucke, 

2015a; Salehipour et al., 2016; Wauters & Vanhoucke, 2017). To overcome these problems, an 

active area of development in academic literature focused on the application of control charts 

to monitor project performance. These charts differentiate abnormal signals that indicate actual 

problems from normal signals that do not affect the project success (Bauch & Chung, 2001; 

Wang et al., 2006; Leu & Lin, 2008; Aliverdi et al., 2013; Colin & Vanhoucke, 2014, Colin et 

al., 2015; Băncescu, 2016; Salehipour et al., 2015; Hadian & Rahimifard, 2019; Votto et al., 

2020a; 2020b). 

Introduced by Shewhart in 1924, control charts have been widely applied to a variety of 

industries and processes (Montgomery, 2009). Traditionally, control charts have been used to 

monitor the stabilities of various parameters (such as the mean, the standard deviation, and the 

non-conforming fraction) of production processes over time. Recently, these charts were 

adopted to monitor the quality of services and determine if the spread of a particular disease 

reached an epidemic level; they were also utilized in public health surveillance and social 

networks (Votto et al. 2020a).  

The primary problem for using the control charts for a project monitoring relates to the 

fact that it is associated with a repeatable and long term process to monitor the deviations from 

the normal progress as defined by the observed data. However, rather than an on-going process, 

the projects are defined as finite and unique endeavors that do not completely follow any 

repeatable process (Wang et al., 2006; Lipke et al., 2009; Colin & Vanhoucke, 2014; 

Vanhoucke, 2017).  

Therefore, the appropriate setting of the thresholds for project control based on how the 

state of control is defined has been a target of fruitful discussions in the literature. Vanhoucke 

(2019) classified the thresholds for the project monitoring into three categories, the static, the 

analytical and the statistical control limits. Additionally, the control charts can be built in 

different ways depending on the samples of the progress data (Martens & Vanhoucke, 2017). 

First, the control limits can be calculated based on historical data either from the initial project 

phases or from similar projects (Bauch & Chung, 2001; Wang et al., 2006; Leu & Lin, 2008; 

Aliverdi et al., 2013; Băncescu, 2016; Salehipour et al., 2016). However, the concept of 

similarity among projects is often vague and questionable and has been target of several critics 
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(Colin & Vanhoucke, 2014; Vanhoucke, 2019; Votto et al, 2020a; 2020b). Alternatively, the 

probability control limits can be determined by simulated samples, based on the acceptable 

variation of each activity duration and cost (Colin & Vanhoucke, 2014; Votto et al., 2020a). 

These probability control limits based on the simulated samples are argued to be the most 

powerful method, although the most complexity as well. To overcome the shortcoming of 

depending of historical data, it relies on more advanced statistical analysis and requires 

computerized methods to generate and analyze the simulated data and assume a shift from the 

project management by experience to a data driven management approach (Vanhoucke, 2019). 

Introduced by Colin and Vanhoucke (2014) these control charts with statistical thresholds based 

on a simulated sample were restricted to the project schedule monitoring using the cost based 

EVM and ESM performance indicators. To the best of the author’s knowledge, the control 

charts with statistical thresholds based on simulated samples had never been used with the 

following objectives: 

a) To monitor the duration performance of projects using a time based duration 

performance index (DPI), from EDM; 

b) To monitor the cost performance of projects using the cost performance indicator 

(CPI), from EVM; 

c) To simultaneously monitor the duration and the cost performance of projects;  

d) Furthermore, there is no method in the literature to support the choice of the most 

appropriate control limit width for each project, depending on its targets and risk 

management decisions.  

In this context, the need for having a more comprehensive statistical project control 

approach with control limits determined by simulated samples provides a rationale for this 

research. Its aims to answer the following question: Can the use of control charts with 

probability control limits to monitor the duration and cost of projects improve the ability to 

distinguish between acceptable and not acceptable variations, and trigger appropriate actions 

when the observed variation in project’s progress exceeds a certain predefined threshold? 

 
1.2 Research Objectives 

 
Previous section highlighted the major gaps in the literature of the control chart for project 

monitoring and the research problem. In order to address such gaps and to answer the research 

question, the general objective of this thesis is: A statistical project control approach with 
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probability control limits to monitor the project performance using EVM and EDM 

indicators. This general objective is deployed into three specific objectives, depicted in Fig. 1. 

1. Propose and asses the use of EDM’s time-based index to improve the performance of 

control charts for the project duration monitoring.  

2. Propose and asses the use of multivariate control charts to simultaneously monitor the 

duration and the cost performance of projects with control limits based on simulated 

samples. 

3. Define a decision-making process to set the most appropriate control limit width for 

the project monitoring, such that it timely triggers corrective actions only when real 

deviations are identified and, simultaneously, reduces the effort in further 

investigations of false alarms. 

Fig. 1: Research Objectives 

 
Source: Figure developed by the author for this thesis 
 

1.3 Thesis Structure 

 
This is a paper-based thesis and it is organized into two parts. Part I of this work follows 

a traditional structure and focuses in the overall research objectives, contributions and how each 

paper supports them. This Chapter 1 contextualizes the research problem, its objectives and the 

thesis structure. Chapter 2 presents the notations used in this work and a brief introduction to 

the EVM, ESM, and EDM indexes, as well as to the control charts performance metrics. 

Chapter 3 presents the progressive process of the research and its phases. It also depicts each 

publication objectives and their main contributions. Chapter 4 summarizes the main findings of 

each paper and the manner how they integrate to each other towards accomplishing the overall 

thesis’ objectives. Finally, Chapter 5 provides the research conclusions, limitations, and 

recommendations for future studies. 
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It is important to note that, in order to develop a comprehensive discussion about each 

publication and the integration among them, this first part presents several elements of the 

original papers, such as tables, figures, arguments, and paragraphs. However, for an extended 

overview of each publication the reader is referred to Part II of this document that presents the 

thesis’ papers themselves, which are the central part of the research.  

This paper-based thesis is based on five publications (presented in Part II). Paper #1 was 

presented in 2017 at the XLIX “Simpósio Brasileiro de Pesquisa Operacional” (SBPO) and is 

entitled “Statistical Project Control: Control Charts for Project Duration Monitoring” (Votto et 

al., 2017). Paper #2, Statistical Project Control with Earned Duration Management: Control 

Charts for Project Duration Monitoring (Votto et al., 2018) was presented in 2018 at the 

“XXXVIII Encontro Nacional de Engenharia de Produção” (ENEGEP). Paper #3 was 

published in 2020 at “Journal of Construction Engineering and Management” (JCEM) of the 

American Society of Civil Engineers (ASCE). It is entitled “Applying and Assessing 

Performance of Earned Duration Management Control Charts for EPC Project Duration 

Monitoring” (Votto et al., 2020a). Paper #4 was published in 2020 at “Computers & Industrial 

Engineering” (CAIE) with the title “Multivariate Control Charts Using Earned Value and 

Earned Duration Management Observations to Monitor Project Performance” (Votto et al., 

2020b). Paper #5, “Earned Duration Management Control Charts: The Relevant Role of the 

Control Limit Width Definition for Construction Projects Duration Monitoring” is in the review 

process.  

The details of each paper are appended at the end of this document. They can be access 

in the original Journal or Congress pages (the links are highlighted in the respective Appendix). 

Fig. 2 depicts the thesis structure and the overall relation among the publications. 
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Fig. 2: Paper-Based Thesis Structure 

 
Source: Figure developed by the author for this thesis 
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2 NOTATIONS AND MONITORED VARIABLES 
 

This chapter presents the notations and a brief introduction to the project control 

methodologies and to the metrics used to assess the control chart performance used in this work. 

 
2.1 Project Control Notation and definitions 

 
This section presents a brief introduction to the EVM, ESM, and EDM indexes, which 

are the monitored variables of this study. For extended overviews of the EVM, ESM, and EDM 

methodologies, the reader is referred to Anbari (2003), Lipke (2003), and Khamooshi and 

Golafshani (2014), respectively. 

The aim of a project control and monitoring system is to detect the deviations from the 

project plan. It identifies and reports the project status, compares it with the plan, analyzes 

deviations, and implements appropriate corrective actions (Hazir, 2015). EVM is a well-known 

project control methodology that has attracted significant attention in the academic literature 

(Anbari, 2003; Fleming & Koppelman, 2005; Vandevoorde & Vanhoucke, 2006; PMI, 2013). 

It integrates the scope, the cost, and the schedule control into the same framework and provides 

performance indexes that allow managers to detect the cost overruns and the delays (Pajares & 

López-Paredes, 2011; Acebes et al., 2014; 2015).  

Briefly, EVM is based on the parameters and variables measured at the project level (Fig. 

3 shows a graphical representation of the EVM methodology). Let μPV , EV , and AC  be the 

planned value, the earned value, and the actual cost of activity i at t, respectively. Once tracking 

each activity’s progress along the project execution is not practical, EVM and its extensions 

aggregate the performance of individual activities and track them at the project level to provide 

the project team with an indication of the project progress status (Colin et al., 2015). Their sums 

related to all n activities are respectively denoted as the project’s total planned value (μPV =

∑ μPV ), the total earned value (EV = ∑ EV ), and total actual cost (AC = ∑ AC ). 

Therefore, the parameter μPV  is the cumulative planned cost for the planned work from the 

beginning of the project up to the review period t according to the baseline schedule. During 

the project execution, the variables AC  and EV  are periodically measured. They represent the 

actual cost incurred to accomplish the work performed and the cumulated planned cost to 

accomplish the total work performed from the beginning of the project up to the review period 
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t, respectively. These metrics are used to define the cost performance index (CPI ) and the 

schedule performance index (SPI ) at every period, as follow in the expressions (1) and (2) 

CPI =
∑ EV

∑ AC
=

EV

AC
  (1) 

SPI =
∑ EV

∑ μPV
=

EV

μPV
  (2) 

These performance indexes can be thought of as efficiency ratios, in which the value one 

indicates that the performance is efficient and on target. More than one indicates an excellent 

performance and less than one indicates a poor project performance with cost or duration 

overrun, respectively (Anbari, 2003). For instance, SPI  measures the overall work performed 

in terms of the earned value, in comparison with the work planned up to that point in time. At 

any time increment t, the project might have achieved more, less, or the same amount of work 

in comparison with the work planned to be achieved until that moment. Thus, this measure can 

have values greater, lower, or equal to one, respectively (Khamooshi & Golafshani, 2014). 

Although the cost dimension of EVM is considered to be very effective, its schedule 

aspect has been questioned conceptually in the last few years. Many researchers have argued 

that SPI  is not an accurate or reliable measure of the schedule performance because the 

monetary value of EV  equals μPV  in the end of the project and, therefore, SPI  converges to 

one regardless of the actual duration (Lipke, 2003; Vandevoorde & Vanhoucke, 2006; Lipke et 

al., 2009; Khamooshi & Golafshani, 2014; Vanhoucke et al., 2015). To overcome this 

limitation, Lipke (2003) proposed ESM concept, in which the new earned schedule variable 

(ES ) was introduced. It provides the actual schedule status of a project by estimating the 

duration at which the current EV was supposed to be earned (Lipke, 2003; Lipke et al., 2009; 

Hammad et al., 2018; Khamooshi & Abdi, 2016). This variable can be expressed in (3) as  

ES = 𝑡 +
μ

μ μ
 ; μPV ≤ EV < μPV  (3) 

The magnitude of ES  is determined by projecting the cumulative EV  curve onto the μPV  

curve (Fig. 3). Afterwards, it is divided by the actual date t to calculate the schedule performance 

index based on Earned Schedule. In this study, it is called Time Performance Index (TPI ), 

(instead of the original notation SPI(t) , to avoid confusion with SPI  from EVM). It is 

expressed in (4) as follows: 

TPI =
ES

𝑡
  (4) 

By using ESM, some deficiencies of EVM can be overcome by monitoring the schedule 

indicator TPI  throughout the entire project (Lipke, 2003; Hammad et al., 2018). Whereas many 
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researchers agreed that the ESM method led to some improvements, recent studies argued that 

it also has conceptual shortcomings (Ghanbari et al., 2017a; Khamooshi & Abdi, 2016; 

Khamooshi & Golafshani, 2014; Votto et al., 2020). Although ES  is measured in time units, it 

is based on the monetary values of EV  and μPV  (Eq. 3). Therefore, TPI  still uses monetary 

terms to evaluate the schedule performance of a project (Khamooshi & Abdi, 2016). 

Furthermore, despite the possible correlations between the durations of activities and the cost 

items, the resulting duration and the cost profiles are not generally the same. The greater is their 

disparity, the poorer is the project duration performance. In such cases, both SPI  and TPI  

produce inaccurate results, and sometimes, TPI  can even perform worse than SPI , especially 

in the case of large long-term projects (Lipke et al., 2009; Khamooshi & Golafshani, 2014). 

Fig. 3: Earned value management and earned schedule management 

 
Source: Votto et al. (2020a) 

To overcome those drawbacks, Khamooshi and Golafshani (2014) have recently 

developed the EDM concept that emphasizes the project duration control. In this method, the 

duration and the cost performance measures are completely decoupled, and the earned duration 

ED  variable is introduced to measure the actual project duration (Khamooshi & Golafshani, 

2014; Vanhoucke et al., 2015; Khamooshi & Abdi, 2016; Ghanbari et al., 2017a). 

Therefore, let μPD , AD , and ED  be the planned, actual, and earned durations of 

activity 𝑖 at time t, respectively. Their sums related to all activities are respectively denoted as 

the total planned duration (μTPD =  ∑ μPD ), total actual duration (TAD = ∑ AD ), 

and total earned duration (TED = ∑ ED ). Note that μTPD , TAD , and TED  for EDM are 

the counterparts or equivalent twins of μPV , AC , and EV  for EVM (Khamooshi & Golafshani, 

2014). Its graphical representation is shown in Fig. 4, where the cost is replaced by the duration 

(expressed in the units of time) on the vertical axis. Thus, these metrics are used to define the 

earned duration index (EDI ) as follows: 
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EDI =
∑ ED

∑ μPD
=

TED

μTPD
 (5) 

Similar to SPI , this indicator measures the overall work performed in terms of Total 

Earned Duration (TED ) in comparison with the work planned (μTPD ) up to that point in time 

and can be greater, lower, or equal to one (Khamooshi & Golafshani, 2014). Furthermore, the 

earned duration (ED ) variable measures the actual project progress in EDM (Khamooshi & 

Golafshani, 2014; Vanhoucke et al., 2015; Khamooshi & Abdi, 2016; Ghanbari et al., 2017a; 

2017b). Its graphical representation is also depicted in Fig. 4. The earned duration on the actual 

date t is the date when the current TED  should be achieved. ED  can be expressed as 

ED = 𝑡 +
μ

μ μ
; μTPD ≤ TED  < μTPD       (6) 

Thus, ED  is divided by the actual date t to obtain the duration performance index (DPI ), 

as follows: 

DPI =
ED

𝑡
      (7) 

Fig. 4: Earned duration management 

 
Source: Adapted from Khamooshi and Golafshani (2014) and Votto et al. (2020a) 

Similar to TPI , DPI  provides the measure of the progress performance on the critical 

path and toward completion of the project. Therefore, the value of DPI  will be less than one, 

if the project is being behind the schedule. It will be equal to one, when the project is overall 

performing on schedule. Finally, it will be greater than one when the project is performing 

ahead of schedule. Thus, these EDM performance indicators can be monitored during the 

project execution to detect deviations from the baseline schedule.  

Additionally, three additional notations are used. Let the μBPD  and μBPV  be the planned 

baseline duration and the planned baseline value of activity 𝑖. Their sums related to all activities 

at the end of the project are respectively denoted as the project’s final total planned duration 

(μTPD = ∑ μBPD ) and the budget at completion (μBAC = ∑ μBPV ). Finally, the 

baseline planned duration (μBPD) is the planned end date of the project considering the 
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activities interdependences and relations described in the baseline schedule and by the project 

network. 

 
2.2 Control Chart Performance Metrics 

 
This section briefly presents the metrics used in this study to evaluate the performance of 

the proposed control charts. These metrics have been used in previous simulation project-

control studies. For an extended overview, the reader is referred to Colin and Vanhoucke 

(2015b), Martens and Vanhoucke (2017), and Votto et al. (2020a). 

The performance of a control chart is evaluated by the warning signals for each project 

execution and identifying whether the project is going to be completed on time or delayed. A 

warning signal is generated if the project performance index of a sample is not within the control 

limits of the respective control chart during any review period t. Such signals can be classified 

into two categories. A true positive is a correct warning signal that is generated when the project 

is past the deadline. In contrast, a false positive, which represents a type I error probability, is 

an incorrect warning signal made for the projects completed on time. In the same way, the lack 

of warning signals can be classified into two categories. True negatives are produced when no 

warning signals are created for a project that is completed on time. False negatives, also called 

type II error probabilities, correspond to a situation when no warning signals are generated for 

the late project executions (Martens & Vanhoucke, 2017). The first two performance measures 

of project control have been presented by Colin and Vanhoucke (2014) and were used in several 

studies (Colin & Vanhoucke, 2015a; 2015b; Martens & Vanhoucke, 2017; Votto et al., 2020a; 

2020b). 

The detection performance (DP) is defined as the probability that a warning signal is 

generated for late projects. It is also called the true positive rate because it measures the 

proportion of positives (i.e. late projects) that are identified as positives (i.e. generated warning 

signals) and represents the conditional probability of receiving a warning signal when the 

project is past the deadline (𝑃 [Signal | 𝑂𝑣𝑒𝑟𝑟𝑢𝑛 Projects ]). The detection performance 

should be as high as possible and it is the ratio of the sum of the late fictitious project executions 

that produced a warning signal during the review period t to the number of late executions 

(Colin & Vanhoucke, 2014; Martens & Vanhoucke, 2017) expressed in (8): 

𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 =  P [Signal | 𝑂𝑣𝑒𝑟𝑟𝑢𝑛 Projects] =
# True Positives

# 𝑂𝑣𝑒𝑟𝑟𝑢𝑛 Projects
  (8) 
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The probability of overreaction (PO) is defined as the probability of receiving a warning 

signal for projects that do not exceed the expected budget and deadline. It is also called the false 

positive rate because it measures the proportion of negatives (i.e. projects within the expected 

budget and duration) that are identified as positives (i.e. generated warning signals). It 

represents the conditional probability of receiving a warning signal when the project is on 

schedule and budget (𝑃 [Signal | 𝑎𝑠 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 Projects]). The probability of overreaction 

should be as low as possible (Colin & Vanhoucke, 2014; Martens & Vanhoucke, 2017). It is 

the ratio between the sum of the as planned fictitious project executions that generated a 

warning signal during the review period t (false positives) and the number of as planned 

executions in the set of simulation runs expressed in (9): 

P𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲 𝐨𝐟 𝐨𝐯𝐞𝐫𝐫𝐞𝐚𝐜𝐭𝐢𝐨𝐧 =  P [Signal | 𝑎𝑠 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 Projects] =
# False Positives

# 𝑎𝑠 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 Projects
  (9) 

The detection performance and the probability of overreaction assess the control limits 

and identify whether warning signals are generated for different project outcomes. 

Nevertheless, in the real life, the outcome of a project is not known during its execution. 

Therefore, two other performance measures are used to accurately assess the performance of 

control charts: one defined by Colin and Vanhoucke (2015b) and a recent measure proposed by 

Martens and Vanhoucke (2017). 

Efficiency is the probability that the project deadline or budget is exceeded when a 

warning signal is generated. Originally defined by Colin and Vanhoucke (2015b), this metric 

is also called as positive predictive value and represents the conditional probability of overrun 

in the presence of a warning signal during the review period t (𝑃 [ 𝑂𝑣𝑒𝑟𝑟𝑢𝑛 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 | Signal]). 

Efficiency can be expressed in (10) as 

𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 = 𝑃 [𝑂𝑣𝑒𝑟𝑟𝑢𝑛 Project | Signal] =
𝐷𝑃 ×  𝑃[𝑂𝑣𝑒𝑟𝑟𝑢𝑛 Projects]

P[Signal]
  (10) 

and its value should be as high as possible. Finally, reliability is the probability that the project 

deadline or budget is exceeded when a warning signal is not generated. It is also called as 

negative predictive value and has been recently proposed by Martens and Vanhoucke (2017). 

Reliability should be as high as possible and represents the conditional probability that the 

project is going to be completed on time in the absence of a warning signal during the review 

period t (𝑃 [𝐴𝑠 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 |𝑛𝑜 𝑆𝑖𝑔𝑛𝑎𝑙]). It can be expressed in (11) as 

𝐑𝐞𝐥𝐢𝐚𝐛𝐢𝐥𝐢𝐭𝐲 = 𝑃[𝐴𝑠 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 Project | no Signal] =
(1 − 𝑃𝑂 ) × 𝑃[𝑂𝑛 𝑡𝑖𝑚𝑒 Projects]

𝑃[no Signal]
  (11) 
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3 RESEARCH APPROACH 
 

In order to achieve its objectives, this research has followed a progressive process to build 

the statistical project control approach to monitor the project progress.  In this context, the three 

journal papers, that are the core of this study, cover each of the research specific objective in a 

comprehensive manner. Meanwhile, the two congress papers provide the bases of the literature 

review and support the first objective. It is worth noting that the output of some papers already 

indicated the rationale of a future research phase. Fig. 5 summarizes the research phases and 

how each paper is related to such phases and the research objectives.  

The research approach adopted by this work, as well as by its papers, starts with a 

literature review to investigate the evolution and trends on the application of statistical process 

control for a project monitoring. Thus, the statistical project control methods were proposed in 

each research phase to address the identified literature gaps and single or multi-case studies are 

used to illustrate the application of the proposed methods on real-life projects. Later, especially 

in papers #3, #4, and #5, a quantitative research approach using simulation experiments is used 

to assess the performance of the proposed approach. 

Fig. 5: Research Phases and Objectives 

 
Source: Figure developed by the author for this thesis 
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3.1 Phase One: Literature Review and Control Charts to Monitor EVM and ESM 

Observations for Project Duration Monitoring 

 
The starting point of the research was the investigation of the existing literature and the 

gaps on the use of statistical process control (SPC) charts to monitor the project performance 

on the earned value management (EVM) and earned schedule management (ESM) 

methodologies.  

The implementation of SPC for project control aims to set the control limits to monitor 

the progress during the project execution based on a state of the statistical control reference. 

Vanhoucke (2019) classified the control limits project monitoring into three categories, the 

static, the analytical and the statistical control limits. The first category is restricted to randomly 

chosen values of the performance metrics that should not be exceeded. Rather than just setting 

thresholds using arbitrary values, the second category uses analytical control limits based on 

straightforward analytical calculations to better set the thresholds for project control, as the 

concept of the allowable buffer consumption. 

In the third category, the control charts use statistical control limits (Vanhoucke, 2019). 

They can be built in different ways depending on how the state of control reference is 

determined. First, the control limits can be calculated based on historical data. During the 

project execution, periodic observations are plotted on the control charts. If these observations 

fall within the defined limits, the project is assumed to be in-control state. Otherwise, an 

abnormal periodic measurement out of the control limits indicates a schedule delay that is out 

of statistical control.  

Although the previous researches on the use of control charts to monitor earned values 

indicators highlighted that it improves project control by providing an objectively based and 

easily implemented real-time monitoring system, the use of control limits based on historical 

data has been identified as a weakness of such an approach. It assumes the need to rely on 

historical data collected during the early phases of the project progress, or on data from similar 

projects from the past (Vanhoucke, 2019). The challenge for these methods lies in how the 

similarity among projects is defined once projects are unique endeavors. Indeed, some authors 

argue that the concept of similarity among projects is often vague and questionable, given the 

uniqueness nature of the projects (Colin & Vanhoucke, 2014).  

The need to overcome the shortcoming of relying on historical data to determine the 

control limits is the rationale for the first phase of this research, which aims to answer the 
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following question: how to define the state of control reference based on simulated samples for 

project duration monitoring? Until that point, the previous works on the use of control charts 

for project monitoring have concentrated on the use historical data to build a sample to 

determine stationary control limits for the whole project life cycle. The first work to propose 

the use of a simulated sample to determine the control limits was the seminal paper of Colin 

and Vanhoucke (2014). They used uniform probability function to describe the uncertainty in 

the duration of activities and performed Monte Carlo simulations to obtain samples of project 

executions. The outputs of the simulation are samples of the performance indicators. They are 

used to determine the control limits and to build the control charts to monitor earned value 

observations. 

In this context, Paper #1 was produced to present the first steps of a statistical project 

control approach, with the control limits based on simulated samples to monitor the project 

duration progress. In this method, a simulation experiment is conducted to define a desired state 

of control. The acceptable deviation of each activity is defined using probability distribution 

functions (PDFs) assigned to describe the uncertainty in each activity duration. Thus, many 

durations Xi are simulated to provide an empirical in-control distribution of each indicator at 

every time t. The aim is to define the control limits such that they satisfy the desired 

performance level. For this reason, they are referred as probability control limits and are 

determined by simulated samples of each performance index in every review period t and 

represent a desired state of control (Votto et al., 2020b). Positive and negative deviations within 

a specified range are assumed to be inherent to any project and are considered to be normal. In 

contrary, some structural or systemic changes during the project life cycle can alter the initial 

expected variability and move the project performance outside of the control limits. Abnormal 

deviations exceeding a defined threshold should trigger further investigations and actions 

(Votto et al., 2020a).  

Paper #1 and Paper #3 presented the control charts with probability control limits to 

monitor the schedule performance index (SPI ) and the time performance index (TPI ). It is 

worth noting that in this approach the probability control limits are non-stationary, that is, for 

each individual time increment t, new samples are simulated, and the control limit is 

determined. These control charts contribute to improve the capacity of EVM and ESM to 

interpret the deviations during the project execution phase by distinguishing between the 
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expected deviations, when project is in statistical control, and the unexpected deviations, which 

can be interpreted as evidence of a real risk of the project delays.  

In this sense, this first paper provided the first steps to build a more comprehensive 

approach for a project duration monitoring (presented in the following sections). Furthermore, 

Paper #1 applied these control charts to monitor the duration of a capital goods projects and 

triangular probability distribution functions (see Appendix F) were assigned to describe the 

uncertainty in each activity duration. Until that point, it could not be found any study on the 

literature with practical applications of such control charts with probability control limits  

The major recommendation for future research of this phase was to measure the 

performance of the control charts and to use the proposed control charts to monitor the cost 

performance of projects. These research avenues built the motivation to the third and fourth 

phase of this thesis, presented in Sections 3.3 and 3.4, respectively.  

 
3.2 Phase Two: Control Charts to Monitor EDM Observations for Project Duration 

Monitoring 

 
Despite the contributions of the first study to the improvement of project duration 

monitoring, it mainly utilized EVM and ESM performance indexes, which used only cost-based 

data as proxies for assessing the projects duration performance. Although the durations and cost 

of activities may be mutually dependent, the project duration and cost profiles are not generally 

the same. The greater is their disparity, the poorer are the EVM and ESM duration performance 

measures (Khamooshi & Golafshani, 2014; Votto et al., 2020a). Therefore, the need for having 

a statistical control chart that uses only time-based data to monitor project duration provides 

the rationale for the second and third phases of this research. 

Earned Duration Management (EDM) is the most recent extension of the earned value 

methodologies. It was originally proposed by Khamooshi and Golafshani (2014) to emphasize 

the time dimension of projects and to address the shortcomings of EVM and ESM caused by 

the usage of cost-based metrics as proxies for assessing the project duration performance 

(Vanhoucke et al., 2015). While EVM and ESM measure project progress based on the 

comparison between the monetary values of planned value (µPV), actual costs (AC) and earned 

value (EV), EDM completely decouples the cost dimension to measure the duration 

performance of projects using exclusively time-based data for the generation of progress 

indicators (Vanhoucke et al., 2015; Ghanbari et al., 2017a). In this methodology, the planned, 
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actual and earned values s-curves are replaced by the total planned duration (µTPD), total actual 

duration (TAD), and the total earned duration (TED), respectively.  

After the seminal work of Khamooshi and Golafshani (2014), several studies have 

recognized EDM’s benefits over other earned value methodologies due to its independence 

from the monetary values (Batselier & Vanhoucke, 2015; Khamooshi & Abdi, 2016; Borges & 

Mario, 2017; Ghanbari et al., 2017a; 2017b; Vanhoucke, 2017; de Andrade et al., 2019). For 

instance, Batselier and Vanhoucke (2015) compared the performance of different deterministic 

state-of-the-art forecasting approaches for project duration based on EVM, ESM, and EDM. 

They concluded that EDM was a valid methodology and that DPI  could be potentially utilized 

to improve the EVM and ESM methods (Batselier & Vanhoucke, 2015). Khamooshi and Abdi 

(2016) used EDM in conjunction with an exponential smoothing forecasting technique to 

predict the completion of a project. Their findings indicated that the EDM performance indexes 

were a preferred option compared with ESM. Ghanbari et al. (2017a; 2017b) proposed fuzzy 

approaches to measure the project performance based on the EDM methodology.  

Nevertheless, the use of EDM performance indicators remained restrict to deterministic 

project control approaches for a long time. Until the beginning of phase two, to the best of the 

author’s knowledge, no study on the use control charts to monitor project duration had been 

found in the literature. To cover this gap, the aim of phase two was to propose the use of control 

charts to monitor the duration performance of projects using exclusively time-based indexes 

from EDM, instead of the more traditional schedule performance indexes, presented before. 

Similar to the previous phase, it uses probability control limits, determined by simulated 

samples, to interpret deviations during the project execution by distinguishing between the 

common and the special sources of variation.  

Paper #2 and Paper #3 presented the use of such control charts to monitor the duration 

performance index (DPI ) from EDM in a real engineering, procurement and construction 

(EPC) project. In this context, the main contribution of Paper #2 lies in the introduction of 

control charts with probability control limits to monitor the recent proposed DPI  in a real 

project. The results suggest DPI  as a promising alternative for a project duration performance 

monitoring and highlight that this probabilistic approach can improve the ability of EDM in 

detecting duration deviation during a project execution.  

The major recommendation of future research of this phase is the performance 

comparison of EDM‘s control charts with the more traditional schedule performance indicators 
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from EVM and ESM methodologies. This research avenue provides the rationale for the third 

phase of this thesis. 

 
3.3 Phase Three: Statistical Project Control Approach and EDM Control Charts 

Performance Assessment 

 
As an extension of previous research phases, phase three aims to propose a 

comprehensive Statistical Project Control Approach to monitor the duration performance of 

projects and to assess the performance of different control charts. It aims to answer the 

following question: Can the use of a time-based index improve the ability of project duration 

control charts to distinguish between acceptable and not acceptable variations and trigger 

appropriate actions when the observed variation in project’s progress exceeds a certain 

predefined threshold? 

In this context, the first main contribution of paper #3 was to propose a comprehensive 

statistical project control approach to monitor the duration project performance using indicators 

only time based. The approach is grounded on the risk analysis (Hulett, 1996; Hulett, 2009; 

Vanhoucke, 2011), the dynamic scheduling (Vanhoucke, 2012), and the control charts 

(Woodall & Montgomery, 1999; Montgomery, 2009). Fig. 6 shows the flowchart that 

summarizes the proposed approach. 

The proposal requires a project-planning phase that consists of a baseline schedule and a 

project risk analysis. It includes the project network with its activities, dependencies, and 

durations, which serves as a reference point for the subsequent steps (step 1). The uncertainty 

is modeled by probability distribution functions to produce estimates of the durations of 

activities (step 2) and the overall risk of the entire project schedule can be evaluated by 

performing extensive Monte Carlo simulations (step 3). The total duration and periodic 

performance indicators are recorded in each simulation run. Thus, the empirical probability 

distribution function of the project duration is used to estimate the probability that a project will 

be completed by a specific date or to predict the most likely end date. The estimated forecasts 

can be compared with the project targets by considering several aspects, including the contract 

definition, the customer expectations, the management decisions, and the monetary or the time 

constraints (step 4). In this step, the output of the simulation also provides the samples of the 

performance indicators and their empirical cumulative probability functions (CDF) to 

determine the probability control limits. 
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Fig. 6: Statistical Project Control Approach for Duration Performance Monitoring 

 
Source: Votto et al. (2020a) 

If the current plan is not acceptable with respect to the project targets and the risk analysis, 

it must be rescheduled (step 9) under different assumptions, and the previous steps repeated. If 

the current plan is acceptable, the next step (step 5) is to build the control charts. Thus, it is used 

to monitor the execution of the actual project by plotting the periodic performance indicators 

(step 6). The observations that fall within the control region indicate that the project is 

statistically in-control and that only common causes or expected variations are present.  

In contrast, the observations that fall below the lower control limit (LCL) represent 

warning signals that indicate an abnormal project behavior caused by the special variation 

sources that can influence the expected result. In these situations, the project team has to 

thoroughly investigate the cause of variation to determine how to bring the project back on track 

(step 7). In many cases, small and punctual corrective actions are sufficient to return the project 

back to the baseline schedule (step 8); however, the project team sometimes is forced to 

reschedule the entire project (step 9). Meanwhile, the control charts can also be used to explore 

opportunities in cases when the project proceeds better than the expected, which are represented 
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by observations higher than the upper control limit (UCL) of the monitored variable. In these 

cases, the project team can also decide to reschedule the project (step 9).  

The application of the described method to a real-life situation was presented and 

demonstrated that the ability of distinguishing between acceptable and not acceptable variations 

could be improved by using the proposed statistical control charts with probability control limits 

obtained by simulations instead of intuitive fixed thresholds based on the practical experience. 

Paper #3 consolidated the results of Paper #1 and #2 and its second contribution lies in 

the assessment of EDM control charts performance in comparison with the traditional EVM 

and ESM indexes. First, an ex post facto comparison with the real project data was performed. 

Furthermore, an extensive simulation experiment was conducted to assess the performance of 

the proposed control chart in different scenarios. In order to determine the discriminative power 

of the proposed control charts, additional out-of-control project executions, in which each 

activity duration may exhibit unacceptable variations, were simulated. The analysis was 

conducted in different project periods to evaluate the performance of each indicator during a 

project lifecycle.  

The results of the computational experiments (summarized on Section 4.1) demonstrated 

generally good performance of the proposed control charts and highlight DPI  as a promising 

alternative for project duration performance monitoring. It demonstrates that the use of DPI  

can improve the ability of the developed statistical control charts to distinguish between 

acceptable and not acceptable variations and trigger appropriate actions when the variation of 

project’s progress exceeds certain predefined statistical thresholds.  

The paper pointed out that its results should be interpreted with care. The strict focus on 

the duration performance of projects and lack of integration between the duration and cost 

performance was a potential weakness in terms of the quality of the feedback provided to the 

project team. The utilization of this method using multivariate control charts to simultaneously 

monitor the project cost and duration based on the control limits produced by simulations was 

recommend as an opportunity of a future research in this area, which was explored in the fifth 

phase of this research (Section 3.5) 
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3.4 Phase Four: Control Charts to Monitor EVM Observations for Project Cost 

Monitoring 

 
Despite the contributions of the previous studies to the improvement of project 

monitoring, they concentrated exclusively on the time dimension of the project performance 

and assumed that the cost variation of each activity is a linear function of its duration. They 

argument that this lack of focus on the cost performance monitoring of projects was a potential 

weakness of the proposed method. Consequently, emerging from the perception that there was 

still a gap on the literature about the use of control charts with probability control limits to 

monitor the cost performance of projects, the aim of the fourth phase was to incorporate the 

cost monitoring into the statistical project control approach. 

In this context, to the best of the author’s knowledge, Paper #4 was the first paper in the 

literature to present the use of control charts with probability control limits determine by 

simulated samples to monitor the Cost Performance Index (CPI ), from Earned Value 

Management methodology, in a real project. As a first contribution of Paper #4, it proposed to 

enhance step 3 and 4 of the previous method (Fig. 6). Thus, Monte Carlos simulation is also 

used to provide the sample and the in-control empirical distribution function of CPI  at every 

review period t. This output is used to determine the probability control limits of CPI  control 

chart. 

The study presented three scenarios of cost variation to analyze the performance of the 

proposed control chart using different measures. The results showed that CPI control charts 

presented a very high detection performance in all scenarios and that its efficiency increases for 

projects with a higher probability of cost overrun.  

 
3.5 Phase Five: Multivariate Control Charts to Simultaneously Monitor the Duration 

and the Cost Performance of Projects 

 
As stated by paper #4, applying separated univariate control charts to each index is a 

possible solution; however, it may be inefficient and lead to erroneous conclusions, primarily 

when the components of the monitored vector are mutually correlated (Montgomery, 2009). 

There is a principle that states that what emerged together should be analyzed together (Mestek 

et al., 1994). A possibility is to consider the monitoring of two or more indicators 

simultaneously by a multivariate control chart which considers their relationship. A common 
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method of constructing multivariate control charts is based on Hotelling's T2 statistic, which is 

the analogue of the Shewhart chart (MacGregor & Kourty, 1995; Montgomery, 2009).  

In this context, the fifth phase of this research investigated the use of multivariate control 

charts to simultaneously monitor the duration and cost performance of projects. The rationale 

for this phase is twofold. First, the reliance on univariate control charts might lead to 

unsatisfactory results such as an increase in the rate of false alarms, particularly when the 

variables are correlated. Several studies indicated that the practice of monitoring the stability 

of the process with more than one correlated quality characteristic using univariate control 

charts increases the probability of false alarms of special causes of variation (El-Din et al., 

2006; Montgomery, 2009; Ryan, 2011; Santos-Fernández, 2012; Hadian & Rahimifard, 2019).  

Second, the project duration and the cost analysis have always to be performed 

simultaneously once they can be correlated and the action to keep one under control can have 

large consequences on the other. For instance, some decisions to minimize the cost overruns of 

some activities can increase the duration of one or more activities (e.g. purchasing cheaper 

material with longer lead-time). Moreover, the project team can be compelled to spend more 

effort or money to compensate delays in some activities (e.g. changing a transport from sea 

freight to air freight or using overtime and additional manpower to minimize a delay in some 

activities).  

Only two studies had proposed multivariate methods to monitor project progress in the 

literature. First, Colin et al. (2015) used multivariate control charts to monitor EVM and ESM 

indicators in a schedule control approach without considering the cost dimension. Later, Hadian 

and Rahimifard (2019) proposed a multivariate control chart to monitor project performance 

using only EVM indexes. Their control chart uses historical data to calculate a static control 

limit for the entire project.  

Despite the contributions of that study to the improvement of project control, it uses the 

schedule performance index (SPI ) from EVM to monitor the project duration performance. 

SPI  has been largely argued as not being the most accurate duration measure because it uses 

cost-based data as proxies to assess project duration performances (Lipke, 2003; Vandevoorde 

& Vanhoucke, 2006; Lipke et al., 2009; Khamooshi & Golafshani, 2014). The use of control 

limits based on historical or progress data was also identified as a weakness of such an approach 

(Vanhoucke, 2019).  
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To the best of the author’s knowledge, the DPI , from EDM, had not been used in a 

multivariate statistical project control approach, and no study had been conducted on the use of 

multivariate control charts with probability control limits to simultaneously monitor the 

duration and the cost of projects. 

In this context, the main objective and contribution of paper #4 was to propose a statistical 

project control approach using multivariate T2 control charts to simultaneously monitor the 

duration and cost performance of projects (Fig. 7). It can be noted that it is an extension of the 

method proposed by Paper #3 and uses the CPI , from EVM, and the DPI , from EDM, to build 

a new multivariate project control statistic.  

Fig. 7: Multivariate statistical project control approach to monitor project performance 

 
Source: Votto et al. (2020b) 

Similar as the previous phases, the duration and cost of activities are described by 

probability distribution functions (PDFs) and the output of Monte Carlo simulation provides 

the samples of each periodic indexes, which build the vector  𝐖 = (DPI0𝑡, CPI0𝑡). Thus, this 

output allows the calculation of the new periodic statistic 𝑇  at any 𝑡, as follows: 

𝑇 = 𝐖𝟎 − 𝛍 ′ 𝐖 − 𝛍  (12) 
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In practice, this means that a pre-defined state of control reference exists for each review 

period 𝑡 represented by the mean vector 𝛍  and the covariance matrix 𝚺 . Consequently, 

and for independence with respect to distributional assumptions, the in-control empirical 

distribution of 𝑇  is used to determine the control limits for each review period t. Thus, the 

control limits L  of the proposed T2-type chart are determined for each period 𝑡 such that 

𝑃(𝑇 > L ) = α, where α is the Type I error. When the project is in execution, at any 𝑡, the vector 

of observations 𝐖 = (DPI𝑡, CPI𝑡), is available. Subsequently, the statistic 𝑇  can be obtained 

as the monitored statistic, using expression (13): 

𝑇 = 𝐖 − 𝛍 ′ 𝐖 − 𝛍  (13) 

Thus, whenever 𝑇 > L  , the control chart will signal. It indicates the presence of special 

sources of variation, interpreted as evidence of real risk of project delays and cost overrun.  

A second contribution of Paper #4 was the assessment of the proposed charts performance 

in comparison with different univariate control charts and other multivariate control charts. The 

results (summarized in Section 4.2) demonstrated that the proposed approach exhibited a good 

performance facilitating the interpretation of actual deviations during the project execution, 

distinguishing between the common and the special sources of variation. It was argued that, 

although the detection performance of the new approach can be lower than some univariate 

control charts (particularly, the DPI  chart), the multivariate control charts using DPI  and CPI  

can reduce the false alarms rate and exhibited much higher efficiency than all the tested 

alternatives. 

 
3.6 Phase Six: Setting the Appropriate Control Limit Width 

 
Previous studies have focused on the construction of different control charts and in their 

performance assessment. Nevertheless, a critical decision to build a statistical project control 

chart is the control limit width, defined by a Type I error (α), which has a strong influence on 

the control chart performance (Colin & Vanhoucke, 2014. Votto et al., 2020a).  

There is a trade-off between the performance of the control chart and the control effort to 

investigate the cause of the warning signals (Colin & Vanhoucke, 2015b). Consequently, the 

most important feature of a control chart is the performance to identify the special sources of 

variation during the project execution that enables the project team to focus only on real 

deviations and avoid spending unnecessary effort to drill down to the activity level to search 

for false alarms.  



41 

 

 

 

Therefore, the central question of phase six is: Which factors can influence the decision 

of the appropriate control limit width to monitor project duration using EDM performance 

indicators, and how to predefine the level α to determine the control limits depending on such 

factors? 

Previous studies only suggested directions to define the level α. Mortaji et al. (2018) 

recommended setting a low value of α to reduce the effort to find out the source of the variation. 

Colin and Vanhoucke (2014) showed that an appropriate choice for α should balance the risk 

of project delays and the willingness to invest effort in false alarms. However, these studies do 

not consider a decision-making process to select the appropriate control limit width. Instead, 

they present numerical examples in which the parameter α is arbitrarily chosen. Recently, Chen 

et al. (2020) proposed an algorithm to optimize the control limits. Despite the contribution of 

this study, it does not consider the different project targets and uncertainty scenarios that can 

influence this decision. To the best of the author’s knowledge, there was no method in the 

literature to support the choice of the most appropriate width of the control limits, depending 

on its targets and risk management decisions.  

In this context, as an extension of the method proposed in the previous phases, paper #5 

has been produced with the objective to call attention to the relevant role that the appropriate 

definition of the control limit width plays in project control and in the performance of control 

charts to monitor the duration of construction projects. It incorporates a decision-making 

process, to define the most appropriate control limit width for a project, into the statistical 

project control approach using control charts with probability control limits. Fig. 8 depicts the 

proposed approach. 

The first two steps followed the previous approaches. First, the definition of baseline 

schedule and the risk analysis, in which the variation of each activity is limited to an acceptable 

margin from the planned values. Later, the use of the simulation output is used to calculate the 

periodic indicators of each run and to obtain the empirical distribution of each indicator for 

every period, providing the required simulated sample to determine the control limits. 

Thus, the third step introduces a new simulation experiment in the project planning phase 

to determine the discriminative power of the control charts. This time, additional out-of-control 

project executions, in which the activities duration may exhibit unacceptable variation, are 

simulated. Different out-of-control scenarios can be proposed for the random variation of the 

activity durations depending on the risk analysis conducted by the project team. The target of 
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this new step is to measure the ability of the control chart to distinguish between acceptable and 

unacceptable variations under different control limit widths.  

Fig. 8: Statistical project control approach to set the appropriate control limit width  

 
Source: Paper #5  

In this method, the control chart performance is measured according to the generation or 

not of warning signals for each project execution and identifying whether the simulation run is 

completed on time or delayed. Three performance measures are used to balance the different 

project targets: the detection performance, the probability of overreactions, and the efficiency. 
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These performance measures were used in previous simulation project control studies to 

evaluate the control charts performance (Martens & Vanhoucke, 2017; Votto et al., 2020a; 

2020b). Nevertheless, to best of the author’s knowledge, they have never been used to support 

setting the most appropriate width of the probability control limits in project planning phase. 

Later, with the appropriated probability control limits defined, it is possible to build the 

control chart and monitor the actual project execution by plotting the periodic performance 

indicators and observing whether they are within the control limits or not, similar to the 

approach presented in the previous phases. 

Therefore, this method works as a decision-making process to support the project team in 

the selection of the appropriate control limit width for a project, depending on its specific 

aspects. The results of the computational experiments (see Section 4.3) confirmed the trade-off 

between the performance of the control charts and the control effort to investigate the cause of 

every warning signal. It highlights that the preferable choice of α is strongly influenced by 

different project duration targets, risk and uncertainty scenarios estimated in the planning phase, 

and the team’s risk profile. 
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4 RESEARCH RESULTS  
 

In this chapter the results are organized to cover each specific objective of the thesis. The 

aim is summarizing the main findings of each research paper and to consolidate the thesis’ 

results. It is worth noting that the results emerge from the publications themselves and from the 

interaction among them, as they follow the progressive approach presented in Chapter 3. The 

objective of this chapter is not to describe each paper’s result in detail. Instead, the aim is to 

briefly depict their main findings that cover each research specific objective, connecting the 

papers and each research phases, in order to build the overall PhD thesis and its contributions. 

 
4.1 Specific Objective 1: Propose and assess the use of EDM’s time-based index to 

improve the performance of control charts for project duration monitoring  

 
As described in Section 1.2 the first specific objective is to analyze how the use of EDM’s 

time-based index can improve the performance of the control charts to monitor the duration 

performance of projects. To accomplish this objective, the first three papers proposed the use 

of different control charts to monitor the project duration performance of a real-life EPC project 

project. The project network, the PDF parameters of the activity durations and costs, and the 

project baseline planned duration (μBPD) and budget at completion (μBAC), considering the 

deterministic planed values, are presented in Appendix G (numerical example A). For an 

extended view of all project details, the reader is referred to Paper #3. The procedure in Fig. 6 

is followed. Fig. 9 shows the individual control charts for SPI  and TPI  (proposed in Paper #1 

and #3), and DPI  (proposed in the Paper #2 and #3).  

Meanwhile, the Papers #1 and #2 recommend as future research the evaluation of the 

control charts performance. In particular, Paper #2, recommended to compare the performance 

of DPI  control charts with the more traditional schedule performance indicators. In this 

context, and evolved from the previous two publications, one of Paper #3's major contribution 

was to present a performance comparison of the recently proposed DPI  index, from EDM 

methodology, with the well-known SPI  and TPI  indexes, from EVM and ESM methodologies, 

respectively. The analysis was conducted in different periods to evaluate the performance of 

each indicator during a real project lifecycle. First, an ex post facto analysis with the real project 

data was conducted. The periodic observations of each index are plotted (• or ×) in the control 

charts of Fig. 9. It shows that the ability of distinguishing between acceptable and not acceptable 

variations can be improved when the proposed statistical control charts with the probability 
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control limits obtained by simulations are utilized instead of intuitive fixed thresholds based on 

the practical experience. Furthermore, although the three control charts have detected the 

deviation from the baseline schedule, the DPI  chart did it faster (over a review period of 200 

days) than the other performance indexes (240 days).  

Fig. 9: Individual Control Charts: 𝐃𝐏𝐈𝐭, 𝐓𝐏𝐈𝐭, and 𝐒𝐏𝐈𝐭 

 
Source: Votto et al. (2020a) 

For a more comprehensive analysis, a second simulation experiment was conducted to 

measure the ability of the DPI  control chart to evaluate the project duration performance and 

to compare it with those of the traditional SPI  and TPI  metrics. To determine the 

discriminative power of the proposed control charts, additional out-of-control project execution 

simulations, in which each activity duration may exhibit unacceptable variations, were 

performed. Five out-of-control scenarios were proposed for the random variation of the activity 

duration to simulate different uncertainty situations for the EPC project (Table 1).  
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Table 1: Simulation scenarios and duration output (Paper #3) 

Scenarios  Distribution Parameters  Simulation output 

m Activities 
 Min 

ajm 
ML 
cjm 

Max 
bjm 

 μ 
Duration 

90th 
quantile 

Delays 
% 

On Time 
% 

Planned 0 j={2, 3,...,35}   aj0 cj0 bj0  312 320 10 90 

1 j={2, 3,...35}   aj0 cj0 1.1bj0  329 341 83 17 

 2 j={2, 3,…,35}   aj0 1.1 cj0 bj0  322 330 60 40 

3 j={2, 3,…,8}   aj0 aj0 + 0.8 (bj0- aj0) bj0  316 324 24 76 

4 j={20, 21,...,27}   aj0 aj0 + 0.8 (bj0- aj0) bj0  316 324 22 78 

5 j={8, 13, 15, 16, 17, 33}   aj0 bj0 bj0  321 333 52 48 

Source: Votto et al. (2020a) 

The performance analysis is depicted in Table 2. A first finding indicated that 

SPI  and TPI  control charts exhibit the same performance in all five scenarios and projects 

phases. These result do not support the common assumption stating that during the last project 

stage, SPI  becomes unreliable when the project completion is delayed (Lipke, 2003; 

Vandevoorde & Vanhoucke, 2006; Khamooshi & Golafshani, 2014). It is clear that if the 

project team uses a fixed value (such as a threshold of 0.9 or a static control limit) as the warning 

level for SPI , at the end of the project, it will lose the ability to identify schedule deviation 

since SPI  converges to one. Nevertheless, if the proposed control charts with non-static 

probability control limits are used to monitor the duration performance, SPI   becomes as 

reliable as TPI  during the entire project lifecycle.  

Table 2: Control charts performance analysis (Paper #3) 

Scenarios 

Detection Performance  Probability of Overreaction  Efficiency  Reliability 

1st third 2nd third Final  1st third 2nd third Final  1st third 2nd third Final  1st third 2nd third Final 

t ≤ 100 t ≤ 200 t ≤ 300  t ≤ 100 t ≤ 200 t ≤ 300  t ≤ 100 t ≤ 200 t ≤ 300    t ≤ 100 t ≤ 200 t ≤ 300 

1 
𝑆𝑃𝐼  0.47 0.77 0.91  0.14 0.32 0.47  0.94 0.92 0.90  0.25 0.38 0.54 
𝑇𝑃𝐼  0.47 0.77 0.91  0.14 0.32 0.47  0.94 0.92 0.90  0.25 0.38 0.54 
𝐷𝑃𝐼 0.48 0.76 0.96*  0.14 0.26 0.38*  0.94 0.93 0.92*  0.26 0.39 0.75* 

2 
𝑆𝑃𝐼  0.41 0.75 0.86  0.13 0.39 0.52  0.83 0.74 0.71  0.50 0.63 0.71 
𝑇𝑃𝐼  0.41 0.75 0.86  0.13 0.39 0.52  0.83 0.74 0.71  0.50 0.63 0.71 
𝐷𝑃𝐼 0.46 0.75 0.92*  0.14 0.35 0.43*  0.83 0.76 0.76*  0.52 0.64 0.82* 

3 
𝑆𝑃𝐼  0.67 0.78 0.85  0.32 0.43 0.47  0.40 0.37 0.37  0.87 0.89 0.92 
𝑇𝑃𝐼  0.67 0.78 0.85  0.32 0.43 0.47  0.40 0.37 0.37  0.87 0.89 0.92 
𝐷𝑃𝐼 0.66 0.73 0.88*  0.31 0.36 0.38*  0.40 0.39 0.42*  0.86 0.88 0.94* 

4 
𝑆𝑃𝐼  0.30 0.46 0.81  0.09 0.15 0.30  0.48 0.47 0.44  0.82 0.85 0.93 
𝑇𝑃𝐼  0.30 0.46 0.81  0.09 0.15 0.30  0.48 0.47 0.44  0.82 0.85 0.93 
𝐷𝑃𝐼 0.25 0.48 0.83*  0.08 0.14 0.23*  0.47 0.49 0.51*  0.81 0.85 0.94* 

5 
𝑆𝑃𝐼  0.47 0.59 0.65  0.10 0.15 0.19  0.83 0.81 0.78  0.61 0.66 0.68 
𝑇𝑃𝐼  0.47 0.59 0.65  0.10 0.15 0.19  0.83 0.81 0.78  0.61 0.66 0.68 
𝐷𝑃𝐼 0.32 0.43 0.87*  0.08 0.12 0.14*  0.81 0.80 0.87*  0.56 0.59 0.86* 

Note: Values in bold (*) highlight the duration index with the best performance at the end of the project for each scenario. 

Source: Votto et al. (2020a) 

A second result from the assessment is the good overall detection performance and the 

probability of overreaction of the control charts used in the case study, which confirms the 

relevance of the proposed approach. Nevertheless, the performance in terms of efficiency varies 
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in each scenario. The developed control charts demonstrated higher efficiency in the scenarios 

with higher probabilities of project delay. However, the control chart efficiency decreases 

dramatically when the probability of a project delay is very low due to the small change in the 

mean of the final duration. These results can be explained by the fact that the Shewhart control 

charts are known to detect large changes in the process mean or variance caused by the special 

sources of variation, however they are not efficient to detect smaller changes (Hawkins and 

Zamba, 2003; Montgomery, 2009). To overcome such problem, other control charts that detect 

smaller changes more efficiently can be developed as future research. 

Finally, the outcome of the experimental study also indicated the general better 

performance of DPI  as compared with that of the traditional SPI  and TPI  control charts 

observed in all proposed scenarios. Therefore, despite the limited scope of the study (caused by 

the single project simulation), it highlighted the proposed DPI  chart with probability control 

limits as a promising alternative for the project duration control. These findings accomplish the 

first objective and demonstrated that the use of the time-based DPI , from EDM, can improve 

the ability of the developed statistical control charts to distinguish between acceptable and not 

acceptable variations and trigger appropriate actions when the variation of project’s progress 

exceeds certain predefined statistical thresholds. 

 
4.2 Specific Objective 2: Propose and Asses the Use of Multivariate T2 Control Charts 

to Monitor the Duration and Cost Performance of Projects Simultaneously 

 
As presented in previous chapters and sections, the lack of integration between the 

duration and the cost performance is a potential weakness in terms of the quality of the feedback 

provided to the project team. In this sense, the second specific objective of this thesis is to apply 

and assess the performance of multivariate T2 control charts to simultaneously monitor the 

duration and the cost performance of projects. To accomplish this objective, the major 

contributions of Paper #4 are threefold. First, the use of a single chart to monitor both 

dimensions simplifies the project control system and decreases the false alarms rate. Second, 

simulated samples were used to determine the control limits for each review period based on 

the allowable cost and duration variation of each activity. Finally, the use of the multivariate 

approach to monitor the recently proposed DPI , which utilizes only time-based metrics, in 

contrast with more traditional methodologies that use cost-based data as proxies to assess the 

performance of a project’s duration.  
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The application of the proposed method on a real-life EPC project is presented. The 

project network, the PDF parameters of the activity durations and costs, and the project baseline 

planned duration (μBPD) and budget at completion (μBAC), considering the deterministic 

planed values, are presented in Appendix G (numerical example A). For an extended view of 

all project details, the reader is referred to Paper #4. To illustrate the use of the method, the 

procedure in Fig. 7 is followed and Monte Carlo simulation experiments are performed. First, 

the variation was limited to an acceptable margin from the planned values. The values of the 

random variables (EV , AC , ED ) in each simulation were recorded to calculate each periodic 

performance indicators. The output of the simulation was used to calculate the in-control vector 

𝛍 = (CPI ;  DPI ), the covariance matrix 𝚺 , and the samples of 𝑇 , which define the state 

of control reference for each period 𝑡. 

An ex post facto analysis of the actual project execution was conducted. In this phase, at 

any 𝑡, only an individual vector 𝐖 = (CPI , DPI ) is available. Fig. 10 shows the control 

ellipse for the simultaneous monitoring of the project duration and cost progress in two review 

periods (80 and 240 days) with the fixed arbitrary thresholds (0.9 and 1.1) generally used in 

project control (dashed line) and the empirical upper and lower probability control limits. The 

periodic observation of the actual performance of the project in periods of 80 and 240 days are 

also plotted (♦). Fig. 10 indicates that the ability to distinguish between acceptable and 

unacceptable variations can be improved when the proposed statistical approach with the 

control limits obtained using simulations is used instead of the intuitive fixed thresholds based 

on practical experience. Additionally, Fig. 10 shows that the in-control ellipse to simultaneously 

monitor project duration and cost can capture deviations in both dimensions. 

Fig. 10: Control ellipse for the simultaneous monitoring of project duration and cost progress: t=80; t=240 days 

 
Source: Votto et al. (2020b) 

Paper #4 pointed out the loss of the temporal sequence of the data as one disadvantage 

associated with the use of the control ellipse as a single monitoring procedure. It is even more 

relevant in the project environment, in which the sample of indicators and reference of state of 
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control vary for each review period. This would require drawing an ellipse chart for each period. 

To overcome this limitation, Paper #4 proposed plotting the periodic observations of 𝑇  in a 

multivariate control chart with an upper control limit for each t. Fig. 11 shows the ex post facto 

𝑇  observations of the actual project execution, using 𝐖 = (DPI𝑡, CPI𝑡) for each time 

increment 𝑡. An observation higher than the control limit should be considered a warning signal 

that indicate the presence of special sources of variation, interpreted as an evidence of actual 

risk of the project delays or cost overrun.  

Fig. 11: T2 Multivariate control chart for simultaneous monitoring of project duration and cost progress  

 
Source: Votto et al. (2020b) 

For a more comprehensive analysis, a second Monte Carlo experiment was performed. 

Different out-of-control scenarios of project executions were generated to investigate the 

discriminative power of the proposed multivariate approach to differentiate between random 

and special causes of variation in the project duration and cost. In this phase, the activity 

duration and cost can exhibit unacceptable variation, larger than the planned variability. The 

aim was to assess the performance of the proposed multivariate control chart 𝐖 =

(DPI0𝑡, CPI0𝑡)and compare it with the traditional univariate and other T2 multivariate control 

charts built with other variables. For this purpose, it was considered three variations in the 

activity duration parameters and other three variations in the activity cost parameters, which 

combined yield a total of nine out-of-control scenarios of the execution phase:  

a) Duration 1: Shifts occur only on the parameters 𝑏 = δ × b , δ = 1.1; 

b) Duration 2: Shifts occur only on 𝑐 = δ × c , δ = 1.1;.  

c) Duration 3: Shifts occur on 𝑏 = δ × b  and 𝑐 = δ × c , δ = δ = 1.05.  

d) Cost A: Cost parameters follow the original variability of the planning phase, and the 

cost shift occurs only because of the linear impact of the duration shift. 



50 

 

e) Cost B: Engineering activities: Coefficient β  is 0 and the cost Y  is related to the 

duration X , by a linear function, that is, Y = β 𝑋 ; Procurement activities: 

Coefficient β  follows a uniform distribution function in the range [𝛽 (1 −

𝜃 ), 𝛽 (1 + 𝜃 )], with 𝜃 = 0.2; Construction activities: Coefficient β  follows a 

triangle distribution ~Tri (0.9 × β , β , 1.3 × β ). 

f) Cost C: Coefficient β  of cost activity 𝑖 follows a triangle distribution ~Tri (0.9 ×

β , β , 1.3 × β ). 

The first result of the experiment (Table 3) was the higher detection performance and 

probability of overreaction exhibited by some univariate control charts, particularly the DPI  

individual control chart. This output corresponded with the results of Montgomery (2009) and 

Ryan (2011), such that even for independent variables, when the same α is used for two or more 

univariate charts for simultaneously monitoring a process, the true probability of a false alarm 

increased. In practice, the use of individual control charts in a joint control procedure increases 

both the detection performance and false alarm rate, measured by the probability of 

overreaction. This distortion in the joint control procedure can be much more severe, depending 

on the correlation structure and the number of variables (Kourti and Macgregor, 1996; 

Montgomery, 2009). 

Therefore, although the detection performance of the univariate control charts can be 

higher, the proposed multivariate control chart exhibited a lower false-positive rate (probability 

of overreaction) and a significantly higher efficiency. Consequently, the use of the proposed 

approach can be considered to have dramatically decreased the number of false alarms and 

increased the efficiency of the project monitoring system in this experiment. 

Paper #4 argued that high efficiency is the most important feature once it balances 

between a high detection performance and a low probability of overreaction. It enables the 

project team to focus only on the actual deviations and avoid spending unnecessary effort to 

drill down to the activity level to search for false project problems.  

In the proposed experiment, it is possible to note that the T2 control chart built with 𝐖 =

 (DPI𝑡, CPI𝑡) had the highest efficiency, even when compared with the other T2 multivariate 

control charts that combine CPI  with different schedule performance indexes (TPI  and SPI ). 

This also indicates the potential of the DPI  to identify deviations.   

Therefore, although the proposed approach must be proved under assumptions other than 

those used in this experiment, this study accomplishes the second research specific objective 
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and highlighted some of its potential benefits to the project control literature. First, the use of 

only one chart to monitor both the project cost and duration performance, instead of a chart for 

each dimension, can simplify the project control system. The study demonstrated that the 

proposed charts can increase the efficiency by detecting actual performance problems and 

decreasing false alarms. Second, using simulated samples to determine the control limits for 

each review period support the project team to pre-define a desirable state of control based on 

the allowable variation of each activity, instead of using historical or progress data to set a fixed 

control limit for the entire project lifecycle. It also enables the control chart to consider the trend 

of the expected project variability and in each period. 

Table 3: Control charts performance analysis (Paper #4) 

 Scenario  Chart  Index 
Cost A   Cost B  Cost C 

Detection 
Performance 

 Probability 
Overreaction 

Efficiency 
 Detection 

Performance 
 Probability 

Overreaction 
Efficiency 

 Detection 
Performance 

 Probability 
Overreaction 

Efficiency 

Duration
1 
 

𝑆ℎ𝑤 SPI 0.91 0.47 0.90  0.91 0.48 0.90  0.91 0.47 0.90 

Shw TPI 0.91 0.47 0.90  0.91 0.48 0.90  0.91 0.47 0.90 

𝑆ℎ𝑤 DPI 0.96a 0.38 0.92  0.96a 0.39 0.92  0.96a 0.38 0.92 

𝑆ℎ𝑤 CPI 0.86 0.40 0.32  0.89 0.50 0.38  0.91 0.47 0.79 

T2
  𝐖  0.81 0.27a 0.94a  0.83 0.30a 0.95a  0.86 0.27a 0.97a 

T2 𝐖  0.88 0.59 0.89  0.86 0.42 0.93  0.85 0.59 0.94 

T2 𝐖  0.80 0.34 0.93  0.82 0.36 0.93  0.85 0.36 0.96 

T2 𝐖  0.92 0.45 0.92  0.92 0.46 0.92  0.91 0.46 0.96 

Duration
2 

𝑆ℎ𝑤 SPI 0.86 0.52 0.71  0.87 0.50 0.73  0.87 0.51 0.72 

Shw TPI 0.86 0.52 0.71  0.87 0.50 0.73  0.87 0.51 0.72 

𝑆ℎ𝑤 DPI 0.92a 0.43 0.76  0.92a 0.42 0.77  0.92a 0.43 0.76 

𝑆ℎ𝑤 CPI 0.83 0.32 0.35  0.89 0.45 0.39  0.89 0.42 0.78 

T2
  𝐖  0.67 0.24a 0.84 a  0.71 0.25a 0.86a  0.75 0.26a 0.93a 

T2 𝐖  0.75 0.38 0.79  0.77 0.38 0.82  0.81 0.40 0.91 

T2 𝐖  0.68 0.30 0.81  0.72 0.31 0.84  0.77 0.32 0.92 

T2 𝐖  0.78 0.38 0.80  0.79 0.39 0.82  0.78 0.41 0.90 

Duration
3 

𝑆ℎ𝑤 SPI 0.88 0.50 0.83  0.88 0.50 0.82  0.89 0.50 0.83 

Shw TPI 0.88 0.50 0.83  0.88 0.50 0.82  0.89 0.50 0.83 

𝑆ℎ𝑤 DPI 0.94a 0.42 0.86  0.94 a 0.42 0.85  0.95a 0.42 0.86 

𝑆ℎ𝑤 CPI 0.84 0.38 0.32  0.89 0.48 0.38  0.90 0.44 0.79 

T2 𝐖  0.75 0.25a 0.91a  0.77 0.29a 0.90a  0.81 0.27a 0.96a 

T2 𝐖  0.79 0.40 0.87  0.82 0.42 0.88  0.85 0.43 0.94 

T2 𝐖  0.74 0.32 0.88  0.77 0.35 0.89  0.82 0.35 0.95 

T2 𝐖  0.86 0.41 0.87  0.86 0.43 0.88  0.86 0.43 0.94 
Notes: a Duration index with best performance for each scenario 
Source: Votto et al. (2020a) 
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4.3 Specific Objective 3: Define a Decision-Making Process to Set the Most Appropriate 

Control Limit Width for Project Monitoring 

 
As described in Section 1.2 the third specific objective is to define a decision-making 

process to define the most appropriate probability control limit width for project monitoring. In 

order to achieve this objective, Paper #5 incorporated one additional simulation step to 

determine the most appropriate control limit width for each project, into the previous statistical 

project control approach using control charts based on simulated samples, to monitor project 

performance indicators. 

Two numerical examples of construction projects are used to illustrate the application of 

the developed framework to monitor two EDM project performance indicators, the duration 

performance index (DPI ), and the earned duration index (EDI ). The project networks, the PDF 

parameters of the activity durations, and the project baseline planned durations (μBPD), 

considering the deterministic planed values are presented in Appendix G. For an extended view 

of all project details, the reader is referred to Paper #5. For both examples, the procedure in Fig. 

8 is followed. Fig. 12 presents the output of the second step, the control charts with different 

probability control limit width (i.e. α=0.01. α=0.05, and α=0.10), of a biofuel construction 

project (the numerical example B). 

Fig. 12: Numerical example B - Individual control chart for 𝐃𝐏𝐈𝐭(a) and 𝐄𝐃𝐈𝐭 (b) 

 
Source: Paper #5 

As described in Section 3.6, in the third step, the goal is to determine the best possible 

threshold, considering the project targets. For this reason, a new simulation experiment is 

conducted to measure the ability of the control charts to distinguish between acceptable and 

unacceptable variations under different control limit widths. To determine this discriminative 

power of the control charts, additional out-of-control project executions and different project 

targets, in which each activity duration may exhibit unacceptable variations, are performed. 
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Tables 4 and 5 present the details and the outputs of the as-planned and two out-of-control 

simulation scenarios for two different planned durations for the numerical example B and A, 

respectively.  

Table 4: Numerical Example B: Simulation Scenarios – Duration Output 

Scenarios 
PDF Parameters 

(Lognormal) 
Nrs µ σ 

Target = 380 days Target = 390 days 

On time Delays  On time Delays 

Planned 𝜇  ; 𝜎  10,000 378 13.8 61% 39% 68% 18% 
Scenario 1.1 𝜇  ; 𝜎 = 3𝜎  10,000 400 44.2 37% 63% 48% 52% 
Scenario 1.2 𝜇  ; 𝜎 = 4𝜎  10,000 416 62.7 32% 68% 41% 59% 
Source: Paper #5 
 
Table 5: Numerical Example A: Simulation Scenarios – Duration Output 

Scenarios 
PDF Parameters 

(Triangular) 
Nrs µ σ 

Target = 315 days Target = 320 days 

On time Delays  On time Delays 

Planned 𝑎 , 𝑐 , 𝑏  10,000 312 6.5 68% 32% 90% 10% 
Scenario 2.1 𝑎 , 𝑐 , 𝑏 = 1.05𝑏  10,000 320 7.8 24% 76% 49% 51% 
Scenario 2.2 𝑎 , 𝑐 , 𝑏 = 1.10𝑏  10,000 329 9.0 5% 95% 16% 84% 
Source: Paper #5 

Table 6 presents the performance analysis of the numerical example B. It is important to 

note that both indicators presented the same performance, despite the different absolute values 

and control limits of these charts and the tendency of EDI  to converge to one at the end of the 

project. This result is similar with the findings about the behaviour of SPI  and TPI , presented 

in Section 4.1.  

Table 6: Control charts performance analysis – Numerical Example B (Paper #5) 

Index Duration Index 
Type I Error (α) 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

𝐃𝐏𝐈𝐭 

380 

Detection 
Performance 0.57 0.64 0.68 0.71 0.74 0.76 0.79 0.81 0.82 0.83 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.91 0.91 0.92 

Probability of 
Overreaction 0.05 0.07 0.10 0.12 0.14 0.16 0.17 0.19 0.21 0.22 0.24 0.25 0.26 0.27 0.29 0.30 0.31 0.32 0.33 0.35 

Efficiency 0.95 0.94 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84 0.83 0.83 0.82 0.82 

390 

Detection 
Performance 0.65 0.71 0.75 0.79 0.81 0.83 0.85 0.87 0.88 0.89 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.97 

Probability of 
Overreaction 0.09 0.12 0.15 0.18 0.20 0.23 0.25 0.26 0.28 0.30 0.32 0.33 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43 

Efficiency 0.89 0.86 0.84 0.83 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 

𝐄𝐃𝐈𝒕 

380 

Detection 
Performance 

0.57 0.64 0.68 0.71 0.74 0.76 0.79 0.81 0.82 0.83 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.91 0.91 0.92 

Probability of 
Overreaction 

0.05 0.07 0.10 0.12 0.14 0.16 0.17 0.19 0.21 0.22 0.24 0.25 0.26 0.27 0.29 0.30 0.31 0.32 0.33 0.35 

Efficiency 0.95 0.94 0.92 0.91 0.90 0.89 0.89 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84 0.83 0.83 0.82 0.82 

390 

Detection 
Performance 

0.65 0.71 0.75 0.79 0.81 0.83 0.85 0.87 0.88 0.89 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.96 0.96 0.97 

Probability of 
Overreaction 

0.09 0.12 0.15 0.18 0.20 0.23 0.25 0.26 0.28 0.30 0.32 0.33 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43 

Efficiency 0.89 0.86 0.84 0.83 0.81 0.80 0.79 0.78 0.77 0.77 0.76 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.71 0.71 

Source: Paper #5 
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Fig. 13 and Fig. 14 display the performance analysis and the impact of α on the three 

performance measures of the two scenarios and the two different planned durations for each 

numerical example, respectively. They show the behavior of the three measures for different 

values of α. Observe that, the higher the value of α, the higher is the detection performance. 

Ideally, the detection performance should be as close to one as possible, meaning that 

unacceptable deviations will be timely detected and the warning signals will be generated to 

trigger corrective actions to put the project back on track.  

In the same way, the probability of overreaction also increases with higher values of α. 

Nevertheless, a low probability of overreaction is desirable because it describes how often the 

project team is warned by the control system when only common cause sources of variation are 

present. A low value of this measure means that the project team does not need to unnecessarily 

invest time and effort in drilling down the project WBS to find the variation at the activity level 

to be confined within the acceptable margins (Colin & Vanhoucke, 2014). This result confirms 

that there is a trade-off between the control charts’ performance and the control effort to 

investigate the cause of every warning signal. For instance, a control chart with higher detection 

performance also demands more effort to investigate false alarms, due to the higher probability 

of overreaction.  

Fig. 13: Performance Analysis: 𝐷𝑃𝐼 -𝐸𝐷𝐼  Control Charts – Numerical Example B (Paper #5) 

 
Source: Paper #5 

To integrate the dynamics of both detection performance and the probability of 

overreaction, the efficiency shows the probability that the project deadline or budget is 

exceeded when a warning signal is generated. In opposite to the other two measures, the 
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efficiency of the control chart drops with higher α values. Consequently, a lower α offers a 

higher control chart efficiency. 

Fig. 14: Performance Analysis: 𝑫𝑷𝑰𝒕-𝑬𝑫𝑰𝒕 Control Charts – Numerical Example A (Paper #5) 

 
Source: Paper #5 

It is important to note that this approach does not aim to define an optimum control limit 

for a project. Instead, the objective is to support the selection of an appropriated control limit 

width, depending on different project specific factors. To illustrate the decision the user has to 

address in this step, examples of three potential values of α are highlighted in each scenario 

(denoted as α , α , and α  in Fig. 13 and Fig. 14). On the first side, α  represents a choice for 

a higher efficiency compared to the detection performance. For instance, in the example B (Fig. 

13), α  is set such that efficiency ≈ 0.9, in all different scenarios. Nevertheless, in real life, the 

user can select α so that the efficiency is even higher. In the other extreme, α  is an example of 

a point in the region where the detection performance is higher than the efficiency. In this case, 

α  is set such that the detection performance ≈ 0.9 in all scenarios but the project team can 

select values of α targeting a higher detection performance. Finally, α  denotes the point in 

which efficiency and detection performance present the same value. 

This finding demonstrates that the appropriate choice of the control limit width depends 

strongly on the importance of each performance measure to the project team. Their relevance 

depends on the risk aversion and the willingness to spend effort in investigating potentially 

false warning signals. Martens and Vanhoucke (2017) and Votto et al. (2020b) stated that in 

scenarios in which overruns are completely unacceptable and ample resources (in terms of 

managerial and financial effort) are available to perform a deep investigation drilling down to 
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the activity level, a high detection performance is preferable. In this case, a higher value of α 

should be chosen (e.g. α ). 

However, if the amount of managerial and financial effort is limited during the project 

execution, it is better to invest the limited available resources and effort only in periods when 

the project is truly endangered. Thus, the control charts with the highest efficiency are more 

valuable (Martens & Vanhoucke, 2017; Votto et al., 2020b). Colin et al. (2015b) showed that a 

control chart with high efficiency can detect actual performance deviations and, simultaneously, 

limit false alarms when no deviation in the final project result is observed. Thus, in these cases, 

a lower value of α (e.g. 𝛼 ) is preferable.  

If the project team decides to balance these measures, the Type I error can be determined 

at the point where the detection performance and efficiency cross each other (e.g. 𝛼 ). At this 

point, the control chart presents the same detection performance and efficiency. 

Another finding concerns the variation of the control charts performance for different 

targets relating to the final duration. The numerical examples demonstrated that for longer 

planned durations (i.e. 390 days in Fig. 13 and 320 days in Fig. 14) and the same level of α, the 

detection performance and the probability of overreaction are higher, while the efficiency is 

lower. It means that, depending on the project target duration, a different control limit width 

should be chosen to have the same control chart performance. 

Moreover, in spite of the two numerical examples have confirmed the same behavior of 

the performance measures for different situations, they demonstrated that the magnitude of the 

impact of certain decisions are different from project to project. For instance, a smaller shift of 

the planned duration on the example A generated a greater impact on the control chart’s 

performance compared to the example B. This finding raises the argument that the choice of 

the appropriate control limits width is project specific and that there is not an optimum level for 

the control limits regardless some project particular features. 

Finally, the last output concerns the performance of the control charts, depending on the 

probability of project delay. The control charts present better efficiency and detection 

performance in scenarios with higher probabilities of project delay and larger changes in the 

project final duration mean than in the ones with lower probability of time overrun due to small 

changes in the mean of the final duration. These results can be explained because while the 

Shewhart control charts excel at detecting larger changes in the process mean or variance caused 

by special sources of variation, their performance decreases in the detection of smaller changes 
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(Hawkins & Zamba, 2003; Montgomery, 2009). Consequently, different risk analysis scenarios 

in terms of duration variation would recommend a different decision on the control limit width. 

For instance, observe that the value of 𝛼 , where the control charts present the same detection 

performance and efficiency, can change in different simulated scenarios.  

With the appropriated probability control limit width defined, it is possible to build the 

control chart and to monitor the actual project execution by plotting the periodic performance 

indicators and observing whether they are within the control limits or not. 

Despite its limited scope, the proposed method and results accomplish the last specific 

objective of defining a decision-making process to set the most appropriate control limit width, 

such that it timely triggers corrective actions only when real deviations are identified and, 

simultaneously reduces the effort in further investigations of false alarms. The study 

demonstrated that this choice depends on the project targets, risk and uncertainty scenarios 

chosen by the team, the project team profile regarding risk aversion or tolerance, and the 

available resources to investigate any project deviation.  
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5 CONCLUSIONS 

 
This PhD thesis sought to propose a statistical project control approach to monitor the 

cost and duration performance of projects. It is a paper-based thesis and its outcomes are five 

papers, presented in the Part II of this document. The research approach adopted by this work, 

as well as by its papers, starts with a literature review to investigate the evolution and trends on 

the application of statistical process control for a project monitoring. Thus, the statistical project 

control method was constructed by a progressive study in each phase followed by a quantitative 

research approach, using simulation experiments and single or multi-case studies to illustrate 

the application and to assess the performance of the method. 

 
5.1 Research Contributions 

 
Previously, Chapter 3 and Chapter 4 presented the main contributions and findings of 

each research phase and publication. The contribution of each paper is deeper discussed in each 

paper (see Appendix A - Paper #1, Appendix B - Paper #2, Appendix C - Paper #3, Appendix 

D - Paper #5, and Appendix E - Paper #5). Based on the findings of these publications, this 

thesis was able to combine the project management body of knowledge and the SPC literature 

to provide contributions to an emerging Statistical Project Control field. 

In summary, the literature review highlighted the control charts with probability control 

limits based on simulated samples as a powerful method to set the thresholds to distinguish 

between acceptable and not acceptable variation on the project performance. However, there 

were relevant gaps on the existing literature, which was limited to the use of cost-based data to 

exclusively monitor the duration dimension of project performance. To address such gaps, this 

work suggested different solutions, using univariate or multivariate approaches, to monitor the 

cost and duration performance of projects, and proposed a process to set the most appropriated 

control limit width. Numerical examples were used to illustrate the application on construction 

projects and simulation experiments results demonstrated that the proposed methods exhibit 

good performance facilitating the interpretation of actual deviations during project execution, 

distinguishing between common and special sources of variation. 

The major research contributions of the thesis emerge from the papers’ results presented 

in Chapter 4, which are summarized in the following major points. First, using simulated 

samples to determine the probability control limits supports the project team to pre-define a 

desirable state of control for each review period based on the allowable variation of each 
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activity, instead of using historical or progress data to set a fixed control limit for the entire 

project lifecycle.   

Second, the use of cost based data to monitor the duration performance of projects has 

been highlighted as a shortcoming of previous methods. To address this problem, this work 

proposed the exclusive use of time-based data, from the recently proposed Earned Duration 

Management (EDM), to monitor the project duration performance using control charts with 

probability control limits. It demonstrated that the univariate control chart using the new DPI, 

from EDM, outperformed the traditional SPI and TPI charts in all simulated scenarios (papers 

#3 and #4). Although further proof under assumptions other than those used in these 

experiments is necessary, this work highlighted EDM as a promising alternative for project 

duration control. Furthermore, the use of DPI for duration monitoring brings additional 

advantages. Different from the more traditional indexes (SPI and TPI), DPI does not use the 

monetary value of EV in its formula. This makes this index less dependent on the cost 

dimension that also uses EV to calculate the CPI. Consequently, it ensures the decoupling of 

both dimensions and a lower correlation between them. 

Third, the lack of integration between the duration and cost performance has been 

identified as a potential weakness in terms of the quality of the feedback provided to the project 

team. Therefore, a comprehensive project control system must consider the monitoring of both 

project performance dimensions. In this context, this research proposed to use of such control 

charts with probability control limits to monitor the cost performance of projects using Earned 

Value Management (EVM) observations. Furthermore, as a fourth contribution, this research 

proposed to monitor the duration and cost dimensions simultaneously, using multivariate T2-

type control charts. It was argued that this alternative is preferred, once both dimensions can be 

correlated and the action to keep one under control can have large consequences on the other. 

For instance, some decisions to minimize cost overruns can increase the duration of one or more 

activities. Moreover, the project team can be compelled to spend more effort or money to 

compensate delays in some activities. 

Finally, this research calls attention for the relevant role that the appropriate choice of the 

control limit width plays to the performance of the control charts for project monitoring. To 

address this concern, an additional simulation step assesses the performance of the control 

charts under different targets and scenarios to support the choice an appropriate type I error α. 

The aim is to set the control limits such that to enable the project team drilling down to lower 
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project levels only when it is really necessary, avoiding investing time and effort to investigate 

false alarms. It is important to note that this approach does not aim to define an optimum control 

limit for a project. It is the authors’ belief that there is not an optimum control limit width 

regardless of specific factors, such as the project targets and risk management scenarios. It is 

clear that only the project team can propose specific scenarios to be simulated in the third step 

of this method. Instead, the objective is to propose a statistical approach to support the user to 

select the appropriate control limit width, depending on project targets, risk and uncertainty 

scenarios estimated by the team, project team profile regarding risk aversion or tolerance, and 

available resources to investigate any project deviation. 

To conclude, the author believes that the results presented in each publication and 

compiled in this thesis answer the Research Question (Section 1.1): The use of control charts 

with probability control limits to monitor the duration and cost of projects can improve the 

ability to distinguish between acceptable and not acceptable variations, and trigger appropriate 

actions when the observed variation in project’s progress exceeds a certain predefined 

threshold. 

 
5.2 Research Output: Framework for Statistical Project Control  

 
As indicated in Section 1.2, the general objective of this work is to propose statistical 

project control approach with probability control limits to monitor project performance. 

Therefore, as the final results of the thesis, Fig. 15 consolidates the approaches presented in the 

different papers of this thesis and depicts the proposed framework. It is worth noting that the 

proposed method can be completely or partially used, according to the users’ needs.  

In the first step, the project network and baseline schedule are defined as a reference point 

for the subsequent phases. The uncertainty is described by probability distribution functions 

assigned to produce estimates of each activity duration and cost. It is important to note that 

different probability distribution functions can be used (e.g. normal, lognormal, uniform, 

triangular, or beta distributions) to describe the behavior of activity duration. In the second step, 

the overall project risk is evaluated using a first Monte Carlo simulation. In this step, only the 

allowable variability for activity duration and costs are used to generate a sample of in-control 

project execution. The result is used to derive the empirical CDF of the final project duration 

and cost. This information is the base for an integrated risk analysis to estimate the probability 

that the project will be completed within a specific date and budget or to predict the most likely 

end date and budget at completion for different levels of certainty. 
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Fig. 15: Statistical project control approach 

 
Source: Figure developed by the author for this thesis 
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In the third step, the periodic values of each indicator are recorded at each time increment 

t and the possible S-curves are generated for each simulated execution. The results are two 

stochastic S-curves, one for the cost (EV and AC curves) and one for the duration (TED curve). 

Thus, the periodic values of DPI  and CPI  can be calculated for each run and the empirical 

distribution of each indicator can be obtained for every period, providing the required simulated 

samples to determine the control limits. It is worth noting that in this approach the probability 

control limits are not static. Then, for each time increment t, new simulated samples are 

generated, and the control limits are determined and the univariate control charts can be built. 

In the fourth step, the multivariate control chart can be built. The in-control empirical 

CDF of the individual indicators are used to build the empirical distribution of the vector 

𝐖 = (DPI0𝑡, CPI0𝑡). Thus, the mean vector, 𝛍 = (DPI , CPI ) and the covariance 

matrix can be calculated. With this information, it is possible to derive the empirical in-control 

distribution function of the statistic T , using expression (12), and to determine the control 

limits of this chart. 

In Step 5, a new simulation experiment can be performed to determine the discriminative 

power of the control charts. This time, additional out-of-control project executions, in which 

the activities duration may exhibit unacceptable variation, are simulated. Different out-of-

control scenarios can be proposed for the random variation of the activity durations and cost 

depending on the risk analysis conduct by the project team. Examples of possible scenarios are 

changes in the standard deviation, the mean, or any other parameter of the distribution function 

assigned to each activity. The target of this step is to measure the ability of the control chart to 

distinguish between acceptable and unacceptable variations under different control limit width, 

defined by a Type I error (α).  

The control chart performance is measured according to the generation or not of warning 

signals for each project execution and identifying whether the simulation run is completed with 

or without time and cost overruns. Three performance measures are used for this evaluation: 

the detection performance, the probability of overreactions, and the efficiency. Thus, it is 

possible to balance different project targets.  

It is important to note that there is not an overall recommendation on the adequate level 

of each performance measure that is worth for every project. There is a trade-off between the 

performance of the control chart and the control effort to investigate the cause of the warning 

signals (Colin & Vanhoucke, 2015b). Consequently, it is significant to set the most appropriate 
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control limit width, defined by a type I error (α), such that it allows the trigger of a corrective 

action only when real deviations are identified and, simultaneously, reduces the effort in further 

investigations of false alarms.  

With the appropriated control limit width defined, it is possible to build the control charts 

(univariate or multivariate) to monitor the actual project by plotting the periodic performance 

indicators and observing whether they are within the control limits or not. At any time increment 

t, only one individual observation of each indicator is available (DPI , CPI ). If the multivariate 

T2 control chart is used, the statistic T  can be obtained as the monitored statistic, using 

expression (13). 

The observations that fall within the control region indicate that the project is statistically 

in control and that only common causes or expected variations are present. In contrast, 

observations out of the control limits represent warning signals that indicate abnormal project 

behavior caused by the special variation sources that can influence the expected result. In these 

situations, the project team must drill down to lower levels of the WBS to thoroughly investigate 

the cause of variation to determine how to bring the project back on track. It is important to 

note that a deeper discussion on the corrective actions or contingency plans is not within the 

scope of this work. 

 

5.3 Limitations and Implication for Theory and Practice 

 
The results presented in this thesis should be interpreted with care as they were obtained 

from few project examples and present some weaknesses and limitations. Our simulation model 

assumes that the planned and earned values of activity i (µPV  and EV ) follow a linear trend, 

beginning at zero and reaching the total planned duration upon activity completion. Although 

it is a common assumption in a project simulation, other models can be tested in future studies. 

Another limitation is the use of few network structures owing to the small numbers of 

case studies. The network structure can be accessed by the serial-parallel (SP) indicator 

(Vanhoucke et al., 2008) and the real projects presented in the thesis’s papers have strong 

parallel networks (SP ≤ 0.30), which is an important characteristic of the capital goods and 

construction projects studied in this work. It should be noted that Colin and Vanhoucke (2014) 

did not observe any significant effect of such SP structures on the performance of statistical 
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project control charts to monitor the performance of projects. Nevertheless, in future studies, 

different project types with other network structures can be used to verify this approach. 

The amount of statistical analysis and computerized methods to generate and analyze the 

huge amounts of data can be considered a potential weakness of this approach compared to 

other project control methods. Indeed, this approach assumes a certain shift from the ad-hoc 

management by experience to a more data-driven management approach, as indicated by 

Vanhoucke (2019). Nevertheless, it is the believe of the author that, although the proposed 

approach requires a higher level of maturity to manage projects in such a data-driven way, the 

main concepts used in the approach (e.g. Monte Carlo simulation and risk analysis) are already 

used in project control and are well known to the project management community.  

Moreover, the EDM methodology has recently received attention in the academic 

literature and in practical settings. Its benefits over other earned value methodologies, due to its 

independence from monetary values, has been recognized by several studies. Consequently, it 

is the author’s belief that the EDM calculation will soon be incorporated into commercial 

project management software packages, what will facilitate the adoption of EDM in the daily 

project business. Actually, some authors already suggested ways to adapt commercial software 

to handle EDM calculation (Vanhoucke, 2017).  

Therefore, the author hopes that this work can contribute with academic researchers and 

project management professionals as the developed framework can be utilized in different 

project environments and practically implemented in real-life projects.  
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APPENDIX F: Probability Distribution Functions Used in This Work 

F.1. Triangular distribution 

A random variable X follows a triangular distribution (i.e. 𝑋~ 𝑇𝑟𝑖 (𝑎, 𝑏, 𝑐), with 
parameters a (minimum), b (maximum), and c (most like), if its probability density function 
(PDF) is: 

𝑓(𝑥) =

⎩
⎪
⎨

⎪
⎧

0 𝑖𝑓 𝑋 < 𝑎 𝑎𝑛𝑑 𝑋 >  𝑏
2(𝑋 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
 𝑖𝑓 𝑎 ≤ 𝑋 ≤ 𝑐

2(𝑏 − 𝑋)

(𝑏 − 𝑎)(𝑏 − 𝑐)
𝑖𝑓 𝑐 ≤ 𝑋 ≤ 𝑏

 

Its cumulative distribution function (CDF) is: 

𝐹(𝑥)

⎩
⎪
⎨

⎪
⎧

0 𝑖𝑓 𝑥 < 𝑎 𝑎𝑛𝑑 1 𝑖𝑓 𝑋 > 𝑏

(𝑋 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
𝑖𝑓 𝑎 ≤ 𝑋 ≤ 𝑐

1 −
(𝑋 − 𝑏)

(𝑏 − 𝑎)(𝑏 − 𝑐)
𝑖𝑓 𝑐 ≤ 𝑋 ≤ 𝑏

 

Its expected value and variance are respectively: 

𝐸(𝑋) =
𝑎 + 𝑏 + 𝑐

3
, 𝑉𝑎𝑟(𝑋) =

𝑎 + 𝑏 + 𝑐 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐

18
 

 

F.2. Lognormal distribution 

A random variable X follows a lognormal distribution (i.e. 𝑋~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (𝜇, 𝜎 )) if 

the logarithm of X is normally distributed with mean 𝜇 and variance 𝜎  (i.e. ln(𝑋) ~𝑁(𝜇, 𝜎 )). 

Its probability density function (PDF) is: 

𝑓(𝑥) =  
1

𝑥𝜎√2𝜋
 𝑒𝑥𝑝 −

(ln(𝑥) − 𝜇)

2𝜎
 

Its cumulative distribution function (CDF) is: 

𝐹(𝑥) = 𝛷
(ln 𝑥) − 𝜇

𝜎
 

where 𝛷 is the CDF of the standard normal distribution (i.e., 𝑁(0,1)). 

Its expected value and variance are respectively: 

𝐸(𝑋) = 𝑒𝑥𝑝 μ +  , 𝑉𝑎𝑟 (𝑋) = 𝑒𝑥𝑝 (2𝜇 + 𝜎 )(exp(σ ) − 1) 
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APPENDIX G: Numerical Examples: Project Networks and PDF 
Parameters 

Table G. 1: Numerical Example A: Project Network and PDF Parameters for Activity Durations and Costs 

Activity 
i 

Predecessor 
DURATION (days)  COST (x 1.000 monetary unit) 

Min 
(a) 

ML 
(c) 

Max 
(b) 

μBPDi =
(a+b+c) / 3 

𝜎    Inflection 
 

𝛽  𝛽  
μBPVi 

(x 1 000) 
  1 - Engineering            

2   10 15 20   15 2.0 0.5  0 1.0 15 
3 2 25 30 35   30 2.0 0.5  0 2.5 75 
4 2 20 30 40   30 4.1 0.5  0 4.5 135 
5 3;4 45 55 65   55 4.1 0.5  0 4.5 248 
6 3 60 70 80   70 4.1 0.5  0 7.5 525 
7 3 80 90 100   90 4.1 0.5  0 3.5 315 
8 2 50 70 90   70 8.2 0.5  0 10.0 700 

9 -  Procurement           
10 6 20 25 30   25 2.0 0.5  650 0.0 650 
11 6 70 85 100   85 6.1 0.5  4 200 0.0 4 200 
12 7 70 85 100   85 6.1 0.5  3 675 0.0 3 675 
13 8 70 80 90   80 4.1 0.5  7 000 0.0 7 000 
14 8 100 110 120 110 4.1 0.5  75 0.0 75 
15 8 70 80 90   80 4.1 0.5  500 14.4 1 652 
16 15 ; 13 25 30 35   30 2.0 0.5  100 6.0 280 
17 16 12 15 18   15 1.2 0.5  0 6.0 90 
18 2 170 190 210 190 8.2 0.5  300 1.8 642 

   19 –Construction        
20 3 45 55 65   55 4.1 0.5  300 4.8 564 
21 20 50 60 70   60 4.1 0.5  550 5.4 874 
22 4 45 55 65   55 4.1 0.5  575 6.0 905 
23 5;22 80 95 110   95 6.1 0.5  675 5.4 1 188 
24 21 20 25 30   25 2.0 0.5  275 3.6 365 
25 24 18 20 22   20 0.8 0.5  275 3.6 347 
26 21 35 40 45   40 2.0 0.5  287 4.8 479 
27 24 30 40 50   40 4.1 0.5  275 3.0 395 
28 10 35 45 55   45 4.1 0.5  75 8.0 435 
29 24 ; 28 75 85 95   85 4.1 0.5  125 9.6 941 
30 11 ; 25 75 80 85   80 2.0 0.5  100 8.0 740 
31 12 ; 27 45 60 75   60 6.1 0.5  375 25.0 1 875 
32 14 ; 23 12 15 18   15 1.2 0.5  0 2.0 30 
33 32 ; 17 ; 18 50 60 70   60 4.1 0.5  75 7.0 495 
34 29 ; 33 12 15 18   15 1.2 0.5  0 3.0 45 
35 34 ; 30 ; 31 12 15 18   15 1.2 0.5  0 3.0 45 
36 35 0 0 0    0         

TOTAL   
        μTPD = 1 825 days 
        μBPD =   300 days 

  
 

μBAC = 30 000  

Notes: The data is adapted from a real capital equipment EPC project of an industrial plant in South America. In 
this work, the acceptable variation is modeled using Triangular PDF to estimate the in-control activity durations. 
Activities 1, 9, 19, and 36 presented are dummy activities without duration and cost and are used only to 
organize the baseline schedule. 
Source: Votto et al. (2020b) 
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Table G. 2: Numerical Example B: Project Network and PDF Parameters for Activity Durations 
Activity 

i 
Predecessor µ σ 

1  249 3.7 

2  51.7 8.3 

3 2 200 6.7 

4 3;23 65 1.7 

5 13;15;4 52 9.1 

6 2 50 6.7 

7 6 149.2 10.8 

8 14 5 0.3 

9 2 85 1.0 

10 9 83.5 5.1 

11 9 100 1.3 

12 2 175.2 2.1 

13 12;20;10;23 65 11.7 

14 2 135 1.5 

15 5;7;10;11;23  34.2 5.8 

16 2 220 2.9 

17 16;23 20.9 1.2 

18 2 255 8.3 

19 18;17;23 25 1.7 

20 9;6 114.2 5.8 

21 3 20 0.6 

22 4 20.8 1.0 

23 10;1 1.7 0.7 

TOTAL 
μTPD = 2177 days 

        μBPD =   360 days 

Notes: The data belong to a biofuel refinery construction project, adapted from an empirical database presented 
by Batselier and Vanhoucke (2015).  In this work, the acceptable variation is modeled using Lognormal PDF to 
estimate the in-control activity durations. 
Source: Paper #5 

 

 


